目的 核电厂中高能管道断裂后的甩击能量较高,造成的危害较大,严重影响了核安全。当管道端部断裂附近布置空间受限、无法布置防护措施时,存在二次危害风险,需要分析管道甩击过程,研究相关防护措施。方法 以主蒸汽管道为例,确定假想断裂破口,采用有限元动力分析方法,对管道甩击的路径、作用点、载荷和动能等进行研究。结果 当给定的断裂破口附近不便安装防甩件时,论证了管道甩击不会对安全相关结构、设备和部件造成危害,可以在墙体上设置防甩件。结论 在确保核电站安全的前提下,为减轻墙体可能受到的冲击力、预埋板布置和防甩件选择提供了指导,为提高经济性和减少时间成本提供了支持,并可应用于类似工程。
Abstract
The high-energy pipeline in nuclear power plants has a high impacting energy after fracture, causing great harm and seriously affecting nuclear safety. When the space near the pipeline end fracture is limited and protective measures cannot be arranged, there is a risk of secondary hazards, and it is necessary to conduct analysis of the pipeline whipping process and research on setting protective measures. With the main steam pipeline as an example, the hypothetical fracture was determined, and the finite element dynamic analysis method was used to study the path, point of action, load, and kinetic energy of the pipeline. When it was inconvenient to install anti-whip restraint devices for a given fracture position, it was demonstrated that pipeline whip would not cause harmful effects on safety-related structures, equipment and components, and anti-whip restraint devices could be installed on the wall. Under the premise of ensuring the safety of nuclear power plants, the work provides guidance for the possible impact on the wall, the arrangement of embedded plates and the selection of anti-whip restraint devices, offers support for improving economy and reducing time costs, and can be applied to similar projects.
关键词
高能管道 /
管道断裂 /
甩击 /
有限元动力分析
Key words
high-energy pipeline /
pipeline fracture /
whip /
finite element dynamic analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 国家核安全局. 核动力厂内部危险(火灾和爆炸除外)的防护设计: HAD 102/04—2019[S]. 北京: 国家核安全局, 2019.
National Nuclear Safety Administration. Protection Design for Internal Hazards (Excluding Fire and Explosion) in Nuclear Power Plants: HAD 102/04-2019[S]. Beijing: National Nuclear Safety Administration, 2019.
[2] 国家能源局. 轻水堆核电厂假想管道破损事故防护设计准则: NB/T 20516—2018[S]. 北京: 原子能出版社, 2018.
National Energy Bureau of the People's Republic of China. Design Basis for Protection of Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture: NB/T 20516-2018[S]. Beijing: Atomic Press, 2018.
[3] American Nuclear Society.Design Basis for Protection of Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture: ANSI/ANS-58.2-1988[S]. Illinois: American Nuclear Society, 1988.
[4] 丁凯, 李岗, 梁兵兵. 核电站高能管道断裂防甩分析方法研究[J]. 核动力工程, 2011, 32(增刊1): 13-17.
DING K, LI G, LIANG B B.Research on the Analysis Method of High Energy Pipeline Fracture and Anti Shake in Nuclear Power Plants[J]. Nuclear Power Engineering, 2011, 32(Sup. 1): 13-17.
[5] KURIHARA R, UEDA S, ISOZAKI T, et al.Experimental Studies of 4-Inch Pipe Whip Test under BWR Loca Conditions[J]. Nuclear Engineering and Design, 1983, 76(1): 23-33.
[6] 王春霖, 佘靖策, 褚金华. 基于LS-DYNA的主蒸汽管道甩动仿真分析[J]. 核动力工程, 2011, 32(增刊1): 93-97.
WANG C L, SHE J C, CHU J H.Simulation Analysis of Main Steam Pipeline Swing Based on LS-DYNA[J]. Nuclear Power Engineering, 2011, 32(Sup. 1): 93-97.
[7] 袁锋, 吕勇波, 艾红雷, 等. 核辅助管道甩击及防甩支架力学分析[J]. 核动力工程, 2013, 34(6): 40-42.
YUAN F, LYU Y B, AI H L, et al.Nuclear Auxiliary Pipe Whip and Whip Restraint Stress Analysis[J]. Nuclear Power Engineering, 2013, 34(6): 40-42.
[8] UEDA S, KURIHARA R, MIYAZAKI N, et al.Analytical Studies of Four-Inch Pipe Whip Tests under BWR LOCA Conditions[J]. International Journal of Pressure Vessels and Piping, 1985, 18(3): 161-176.
[9] 梁向东, 冀英杰, 何海峰, 等. 核电站高能管道甩击防护中的能量及力学分析[J]. 压力容器, 2019, 36(1): 41-47.
LIANG X D, JI Y J, HE H F, et al.Energy and Stress Analysis on Whip Restraint of High Energy Piping for Nuclear Power Plant[J]. Pressure Vessel Technology, 2019, 36(1): 41-47.
[10] 徐国飞, 盛锋, 陈昊阳. 核电厂新型H形防甩击件研究[J]. 核科学与工程, 2017, 37(2): 293-301.
XU G F, SHENG F, CHEN H Y.Study on New Type-H Whip Restraint for Nuclear Power Plants[J]. Nuclear Science and Engineering, 2017, 37(2): 293-301.
[11] 张兴田, 操丰, 丁有元, 等. 基于双线性法的高能管道假想破口载荷分析及H型防甩击限制器设计[J]. 核动力工程, 2011, 32(5): 64-68.
ZHANG X T, CAO F, DING Y Y, et al.Load Analysis of Hypothetical Ruptures and Optimum Design of H-Type Anti-Whip Restraint Devices for High Energy Pipes Based on Bilinearity Method[J]. Nuclear Power Engineering, 2011, 32(5): 64-68.
[12] 白长青, 李志国, 熊小念, 等. 冲击气流作用下放空管道流固耦合动力学分析[J]. 流体机械, 2016, 44(2): 34-38.
BAI C Q, LI Z G, XIONG X N, et al.FSI Dynamics Analysis of Vent Pipes under the Action of Impact Air Flow[J]. Fluid Machinery, 2016, 44(2): 34-38.
[13] 邱发成, 徐飞, 全学军, 等. 水力喷射空气旋流器气相压降特性的数值模拟[J]. 流体机械, 2015, 43(12): 11-16.
QIU F C, XU F, QUAN X J, et al.Numerical Simulation of Gas Phase Pressure Drop in a Water-Sparged Aerocyclone[J]. Fluid Machinery, 2015, 43(12): 11-16.
[14] HOLMQUIST T, JOHNSON G R.A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain Rates and High Pressures[J]. Journal of Applied Mechanics, 2018, 78: 051003.
[15] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al.A Plasticity Concrete Material Model for DYNA3D[J]. International Journal of Impact Engineering, 1997, 19(9/10): 847-873.
[16] AL GALIB D, LIMAM A.Experimental and Numerical Investigation of Static and Dynamic Axial Crushing of Circular Aluminum Tubes[J]. Thin-Walled Structures, 2004, 42(8): 1103-1137.