基于小样本深度学习的航天密封材料表面缺陷检测

张永茜, 朱斌, 郑雯, 刘瞾, 孔维萍, 沈家禾

包装工程(技术栏目) ›› 2026, Vol. 47 ›› Issue (1) : 283-291.

PDF(7796 KB)
PDF(7796 KB)
包装工程(技术栏目) ›› 2026, Vol. 47 ›› Issue (1) : 283-291. DOI: 10.19554/j.cnki.1001-3563.2026.01.033
国防装备

基于小样本深度学习的航天密封材料表面缺陷检测

  • 张永茜1, 朱斌1, 郑雯2, 刘瞾1,*, 孔维萍1, 沈家禾1
作者信息 +

Surface Defect Detection of Aerospace Sealing Materials Based on Few-shot Deep Learning

  • ZHANG Yongqian1, ZHU Bin1, ZHENG Wen2, LIU Zhao1,*, KONG Weiping1, SHEN Jiahe1
Author information +
文章历史 +

摘要

目的 针对航天密封材料样本数量少且较难识别的问题,提出一种基于小样本深度学习的表面缺陷检测模型。方法 通过对航天密封圈样本图像的采集、预处理,制作了适用于无监督算法的数据集。在RegAD算法基础上,将残差网络ResNet与空间变换网络STN相结合,提出一种密封材料表面缺陷检测模型RegAD-RS。结果 在样本支撑集包含2个、4个和8个正常样本的情况下对模型进行训练,结果显示该模型能够准确识别材料表面缺陷,性能指标AUROC均在90%以上,最高可达97.29%。结论 基于小样本深度学习的航天密封材料表面缺陷检测模型展现了较强的检测优势,提高了航天密封特殊材料表面缺陷检测精度,能够有效保障航天精密工业品质量安全。

Abstract

The work aims to propose a surface defect detection model based on few-shot deep learning to address the problems of small sample size and difficulty in identification of aerospace sealing materials. By collecting and preprocessing the sample images of aerospace sealing rings, a dataset suitable for unsupervised algorithms was constructed. On the basis of the RegAD algorithm, a surface defect detection model for sealing materials, named RegAD-RS, was proposed by combining the Residual Network (ResNet) with the Spatial Transformer Network (STN). The model was trained under the conditions that the sample support set contained 2, 4 and 8 normal samples respectively. The results showed that the model could accurately identify the surface defects of materials, with the performance index AUROC (Area Under the Receiver Operating Characteristic Curve) all above 90% and the highest reaching 97.29%, demonstrating strong detection advantages. It improves the detection accuracy of surface defects of special aerospace sealing materials and can effectively ensure the quality and safety of aerospace precision industrial products.

关键词

密封材料 / 小样本 / 无监督学习 / 缺陷检测

Key words

sealing materials / few-shot / unsupervised learning / defect detection

引用本文

导出引用
张永茜, 朱斌, 郑雯, 刘瞾, 孔维萍, 沈家禾. 基于小样本深度学习的航天密封材料表面缺陷检测[J]. 包装工程. 2026, 47(1): 283-291 https://doi.org/10.19554/j.cnki.1001-3563.2026.01.033
ZHANG Yongqian, ZHU Bin, ZHENG Wen, LIU Zhao, KONG Weiping, SHEN Jiahe. Surface Defect Detection of Aerospace Sealing Materials Based on Few-shot Deep Learning[J]. Packaging Engineering. 2026, 47(1): 283-291 https://doi.org/10.19554/j.cnki.1001-3563.2026.01.033
中图分类号: TB32   

参考文献

[1] 张薇, 苑改红, 周天一, 等. 基于机器学习的航天装备金属表面缺陷检测方法综述[J]. 航天电子对抗, 2025, 41(3): 43-50.
[2] ZHANG W, YUAN G H, ZHOU T Y, et al.Review of Metal Surface Defect Detection Methods for Aerospace Equipment Based on Machine Learning[J]. Aerospace Electronic Warfare, 2025, 41(3): 43-50.
[3] 侯春佳, 何博侠, 胡金松, 等. 微小型航天密封圈表面缺陷检测[J]. 光子学报, 2024, 53(3): 151-159.
HOU C J, HE B X, HU J S, et al.Surface Defect Detection of Miniature Aerospace Sealing Ring[J]. Acta Photonica Sinica, 2024, 53(3): 151-159.
[4] 葛爱明, 闫峥, 李兴隆, 等. 高光谱遥感图像高分辨率弱小目标检测技术[J]. 飞控与探测, 2025(3): 82-88.
GE A M, YAN Z, LI X L, et al.High Resolution Small Target Detection Technology in Hyperspectral Remote Sensing Images[J]. Flight Control & Detection, 2025(3): 82-88.
[5] TABERNIK D, ŠELA S, SKVARČ J, et al.Segmentation-Based Deep-Learning Approach for Surface-Defect Detection[J]. Journal of Intelligent Manufacturing, 2020, 31(3): 759-776.
[6] HUANG Y B, QIU C Y, YUAN K.Surface Defect Saliency of Magnetic Tile[J]. The Visual Computer, 2020, 36(1): 85-96.
[7] RUDOLPH M, WANDT B, ROSENHAHN B.Same Same but DifferNet: Semi-Supervised Defect Detection with Normalizing Flows[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa, HI, USA. IEEE, 2021: 1906-1915.
[8] TAO X, GONG X Y, ZHANG X, et al.Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5018021.
[9] YOUKACHEN S, RUCHANURUCKS M, PHATRAPOMNANT T, et al.Defect Segmentation of Hot-Rolled Steel Strip Surface by Using Convolutional Auto-Encoder and Conventional Image Processing[C]// 2019 10th International Conference of Information and Communication Technology for Embedded Systems (IC-ICTES). Bangkok, Thailand. IEEE, 2019: 1-5.
[10] WU J C, CHEN D J, FUH C S, et al.Learning Unsupervised Metaformer for Anomaly Detection[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal, QC, Canada. IEEE, 2022: 4349-4358.
[11] HUANG C Q, GUAN H Y, JIANG A F, et al.Registration Based Few-Shot Anomaly Detection[C]// Computer Vision - ECCV 2022. Cham: Springer, 2022: 303-319.
[12] HU B, ZHOU N Y, ZHOU Q, et al.DiffNet: A Learning to Compare Deep Network for Product Recognition[J]. IEEE Access, 2020, 819336-19344.
[13] BAI G J, LING C, ZHAO L. Temporal Domain Generalization with Drift-Aware Dynamic Neural Networks[EB/OL].2022: arXiv: 2205.10664. https://arxiv.org/abs/2205.10664
[14] BERTINETTO L, VALMADRE J, HENRIQUES F J, et al.Fully-Convolutional Siamese Networks for Object Tracking[J]. CoRR, 2016, 3: 850-865.
[15] HE K M, ZHANG X Y, REN S Q, et al.Deep Residual Learning for Image Recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016: 770-778.
[16] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al.Spatial Transformer Networks[J]. MIT Press, 2015. DOI: 10.48550/arXiv.1506.02025.
[17] QUAN Y H, CHEN M Q, PANG T Y, et al.Self2Self with Dropout: Learning Self-Supervised Denoising from Single Image[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA. IEEE, 2020: 1887-1895.
[18] SHAHAM T R, DEKEL T, MICHAELI T.SinGAN: Learning a Generative Model from a Single Natural Image[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea. IEEE, 2019: 4569-4579.
[19] ZHU D X, WU X D, YANG T B. Benchmarking Deep AUROC Optimization: Loss Functions and Algorithmic Choices[EB/OL].2022: arXiv: 2203.14177. https://arxiv.org/abs/2203.14177
[20] 王津申, 李阳, 王清峰, 等. 高光谱图像序列中的运动弱小目标检测[J]. 飞控与探测, 2019, 2(3): 85-89.
WANG J S, LI Y, WANG Q F, et al.Detection of Moving Dim Targets in Hyperspectral Image Sequences[J]. Flight Control & Detection, 2019, 2(3): 85-89.

PDF(7796 KB)

Accesses

Citation

Detail

段落导航
相关文章

/