目的 传统的锰基热敏传感器的测温区间在室温以上,无法满足军用包装在宽温域环境下温度精确监测的需求,开发面向军用包装的高精度宽温域热敏传感器,助力军用包装智能化。方法 采取经针对性改进后的固相法,引入Fe元素对Mn-Co-Ni三元体系NTC热敏传感器进行掺杂,制备4组灵敏度高与稳定性优的热敏传感器。结果 4组组分物相准确,且均在特定中低温范围(-20~60 ℃)呈现出良好的NTC效应。其中编号为A2的Fe0.6Ni0.3Co0.9Mn1.2O4组分在温度区间内具有高精度的使用优势,且温域适应性好,其在反应灵敏度的关键指标热敏常数B25-50值上高达到3 839.59 K,还具有室温电阻低(4.961 kΩ)的低能耗优势。结论 成功制备出了综合电性能较好的热敏传感器,Fe元素对Mn-Co-Ni三元体系的掺入对电性能带来较高的提升,器件在特定温度区间具有较好的灵敏度和稳定性,在军用包装环境智能监测领域具有极大的应用前景。
Abstract
Traditional manganese-based thermistors operate above room temperature, which can not meet the demand for accurate temperature monitoring of military packaging in wide-temperature environments. Therefore, it is necessary to develop high-precision, wide-temperature-range thermistors for military packaging to promote its intelligentization. In this study, Fe elements were doped into the NTC (Negative Temperature Coefficient) thermistor with a Mn-Co-Ni ternary system by a specifically improved solid-phase method, and four groups of sensors with high sensitivity and excellent stability were fabricated. The results showed that the four groups of components had accurate phases and exhibited good NTC effects in a specific medium-low temperature range (-20-60 ℃). Among them, the Fe0.6Ni0.3Co0.9Mn1.2O4 component (coded as A2) stood out with high precision and good temperature adaptability. Its thermosensitive constant B25-50 value, a key indicator of reaction sensitivity, reached as high as 3 839.59 K, and it also had the advantage of low energy consumption due to its low room-temperature resistance (4.961 kΩ). A thermistor with excellent comprehensive electrical properties is successfully prepared. The doping of Fe elements into the Mn-Co-Ni ternary system significantly improves the electrical properties of the sensor. The device exhibits good sensitivity and stability in the specific temperature range, thus holding great application prospects in the field of intelligent environmental monitoring for military packaging.
关键词
热敏电阻 /
军用包装 /
负温度系数 /
Fe掺杂 /
B值 /
传感器
Key words
thermistor /
military packaging /
Negative Temperature Coefficient (NTC) /
Fe doping /
B value /
sensor
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张伦武, 周堃, 赵方超, 等. 装备环境适应性研究进展及展望[J]. 装备环境工程, 2024, 21(5): 1-12.
ZHANG L W, ZHOU K, ZHAO F C, et al.Research Progress and Prospect of Materiel Environmental Worthiness[J]. Equipment Environmental Engineering, 2024, 21(5): 1-12.
[2] 徐豪, 杨森, 杨欢, 等. 海洋大气环境对封套防护材料性能影响[J]. 装备环境工程, 2023, 20(10): 131-138.
XU H, YANG S, YANG H, et al.Effect of Marine Atmospheric Environment on the Properties of Envelope Protective Materials[J]. Equipment Environmental Engineering, 2023, 20(10): 131-138.
[3] 张春和, 马维平, 蔡志强, 等. 现代战争后勤保障对军品包装的需求研究[J]. 包装工程, 2011, 32(23): 91-94.
ZHANG C H, MA W P, CAI Z Q, et al.Requirements Investigation of Modern War Logistic Support on Military Product Packaging[J]. Packaging Engineering, 2011, 32(23): 91-94.
[4] 新华社. 习近平在中央政治局第二十二次集体学习时强调统一思想坚定信心鼓足干劲抓紧工作奋力推进国防和军队现代化建设[J]. 党建, 2020(8): 1.
Xinhua News Agency.During the Twenty-Two GroupStudy Sessions at the Politburo, XI Jin-ping Stressed that a Strong Unity of Mind, Confidence, Drive, andWork Vigorously are Pushed Forward the Modernization of National Defense and the Armed Forces[J]. Party Building, 2020(8): 1.
[5] 周代芳. 国防和军队现代化建设背景下军品智能包装的理论研究[J]. 包装工程, 2022, 43(9): 275-280.
ZHOU D F.Theoretical Research on Intelligent Packaging of Military Supplies under the Background of National Defense and Military Modernization[J]. Packaging Engineering, 2022, 43(9): 275-280.
[6] 赵吉敏, 孙剑桥, 刘振华. 新时代军品包装的发展方向[J]. 包装工程, 2021, 42(7): 270-274.
ZHAO J M, SUN J Q, LIU Z H.Development Direction of Military Packaging in the New Era[J]. Packaging Engineering, 2021, 42(7): 270-274.
[7] SONG Z L, CHEN Z J, DU G, et al.Research Progress on Negative Temperature Coefficient Thermistors: Review[J]. Journal of Materials Science: Materials in Electronics, 2025, 36(11): 688.
[8] SHIN J, JEONG B, KIM J, et al.Sensitive Wearable Temperature Sensor with Seamless Monolithic Integration[J]. Advanced Materials, 2020, 32(2): 1905527.
[9] JEROTIĆ A, ĐOKIĆ D, ATANASIJEVIĆ P, et al.Non-Bridge NTC Thermistor Anemometer with Programmable Sensitivity[J]. Flow Measurement and Instrumentation, 2024, 96: 102544.
[10] 张克, 韩迎春. 温度计量漫谈热电阻(二)[J]. 中国计量, 2012(6): 58-60.
ZHANG K, HAN Y C.A Discussion on Temperature Measurement[J]. China Metrology, 2012(6): 58-60.
[11] MHIN S.Recovery of Ni-Co-Mn Oxides from End-of-Life Lithium-Ion Batteries for the Application of a Negative Temperature Coefficient Sensor[J]. Inorganics, 2024, 12(4): 105.
[12] BECKER J A, GREEN C B, PEARSON G L.Properties and Uses of Thermistors—Thermally Sensitive Resistors[J]. Bell System Technical Journal, 1947, 26(1): 170-212.
[13] FELTZ A, TÖPFER J. Investigations on Electronically Conducting Oxide Systems XXVI. Preparation and Properties of Ni6MnO8 and NiMnO3 - δ (δ ≈ 0.02)[J]. Journal of Alloys and Compounds, 1993, 196(1/2): 75-79.
[14] FELTZ A, NEIDNICHT B.Investigations on Electronically Conducting Oxide Systems XX. MgNiMnO4 and Properties of MgzNiMn2-zO4 Spinels[J]. Journal of Alloys and Compounds, 1991, 177(1): 149-158.
[15] FAU P, BONINO J P, DEMAI J J, et al. Thin Films of Nickel Manganese Oxide for NTC Thermistor Applications[J]. Applied Surface Science, 1993, 65/66: 319-324.
[16] WANG Q, KONG W W, YAO J C, et al.Fabrication and Electrical Properties of the Fast Response Mn1.2Co1.5Ni0.3O4 Miniature NTC Chip Thermistors[J]. Ceramics International, 2019, 45(1): 378-383.
[17] ZHAO Y L, ZHAO C H, HUANG J, et al.LaMnO3-Ni0.75Mn2.25O4 Supported Bilayer NTC Thermistors[J]. Journal of the American Ceramic Society, 2014, 97(4): 1016-1019.
[18] JADHAV R N, MATHAD S N, PURI V.Studies on the Properties of Ni0.6Cu0.4Mn2O4 NTC Ceramic Due to Fe Doping[J]. Ceramics International, 2012, 38(6): 5181-5188.
[19] TEICHMANN C, TÖPFER J. Sintering and Electrical Properties of Cu-Substituted Zn-Co-Ni-Mn Spinel Ceramics for NTC Thermistors Thick Films[J]. Journal of the European Ceramic Society, 2022, 42(5): 2261-2267.
[20] TIAN Y H, CAI J, ZHAO Y H, et al.Preparation of Cobalt-Doped Manganese-Based Oxide Materials for High-Sensitive and Ultra-Stable Thermistors[J]. Materials Chemistry and Physics, 2025, 343: 131034.
[21] LI H B, ZHANG H M, CHANG A M, et al.Fast Response and High Stability Mn-Co-Ni-Al-O NTC Microbeads Thermistors[J]. Journal of the American Ceramic Society, 2021, 104(8): 3811-3817.
[22] YANG T, ZHANG B, LUO P, et al.New NTC Thermistors Based on LaCrO3-Mg(Al0.7Cr0.3)2O4 Composite Ceramics[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(11): 7558-7561.
[23] FU P, MIAO G T, YIN M, et al.Structure and Electrical Properties of Bi0.5Ba0.5FeO3-Y2O3 Composite NTC Ceramics[J]. Materials Science and Engineering: B, 2019, 249: 114421.
[24] WADHWA A, BENAVIDES-GUERRERO J, GRATUZE M, et al.All Screen Printed and Flexible Silicon Carbide NTC Thermistors for Temperature Sensing Applications[J]. Materials, 2024, 17(11): 2489.
[25] DEUTZ D B, VAN DER ZWAAG S, GROEN P. Effect of Particle Contact on the Electrical Performance of NTC-Epoxy Composite Thermistors[J]. Materials Research Express, 2020, 7(2): 025702.
[26] REIMANN T, TÖPFER J. Low-Temperature Sintered Ni-Zn-Co-Mn-O Spinel Oxide Ceramics for Multilayer NTC Thermistors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 10761-10768.
[27] LIU Y Y, DENG W Y, CHEN X H, et al.CaMn0.05Zr0.95O3-NiMn2O4 Composite Ceramics with Tunable Electrical Properties for High Temperature NTC Thermistors[J]. Ceramics International, 2022, 48(22): 33455-33461.
[28] MA C.(1-x)Mn1.56Co0.96Ni0.48O4/xLaMnO3 (0.1≤x≤0.9): A Composite NTC Thin Film with Low Resistance, High Sensitivity and Strong Light Absorption[J]. Ceramics International, 2023, 49(17): 28442-28448.
[29] RYU J, HAN G F, LEE J P, et al.Co and Fe Doping Effect on Negative Temperature Coefficient Characteristics of Nano-Grained NiMn2O4 Thick Films Fabricated by Aerosol-Deposition[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(5): 3422-3426.
[30] CHEN X Y, WANG L, XU J B, et al. Preparation and Electrical Properties of Mn-Co-Ni-O Thin-Film for NTC Thermistors Application[J]. Materials Science Forum, 2013, 745/746: 599-604.