EPE拉/压本构模型构建及其对仿真结果的影响

孙晓静, 付志强, 代兵, 唐为梁

包装工程(技术栏目) ›› 2026, Vol. 47 ›› Issue (1) : 161-168.

PDF(1835 KB)
PDF(1835 KB)
包装工程(技术栏目) ›› 2026, Vol. 47 ›› Issue (1) : 161-168. DOI: 10.19554/j.cnki.1001-3563.2026.01.018
自动化与智能化技术

EPE拉/压本构模型构建及其对仿真结果的影响

  • 孙晓静, 付志强*, 代兵, 唐为梁
作者信息 +

Construction of EPE Tension/Compression Constitutive Model and Its Influence on Simulation Results

  • SUN Xiaojing, FU Zhiqiang*, DAI Bing, TANG Weiliang
Author information +
文章历史 +

摘要

目的 在运输过程中,包装材料受到的冲击无法避免。在冲击仿真时,对材料属性目前仅考虑压缩本构模型,仿真精度较低,为提升冲击仿真的准确性与精度,针对EPE同时构建了压缩和拉伸本构模型。方法 基于压缩和拉伸的试验应力-应变曲线,构建压缩和拉伸本构模型。通过ABAQUS中的Low-density foams模块对不同高度下(300、450、600 mm)结构样的面、棱和角进行跌落仿真分析,与结构样的试验结果进行对比。结果 在不同高度的面、棱、角跌落下,仅考虑压缩本构的仿真结果与实验结果对比误差范围为8.09%~30.80%,同时考虑压缩和拉伸本构的仿真结果与实验结果对比误差范围为1.30%~4.86%。结论 在跌落试验中,不能忽略拉伸变化对EPE材料力学性能的影响。因此,在进行跌落仿真分析时,将材料的拉伸本构纳入考量,有助于提升工程应用分析的准确性。

Abstract

In transport packaging, the impact of packaging materials is unavoidable. In impact simulation, only the compression constitutive model is currently considered for material properties, resulting in relatively low simulation accuracy. The work aims to construct a compression and tensile constitutive model for EPE to improve the accuracy of material impact simulation. The compression and tensile constitutive models were constructed based on the experimental stress-strain curves of compression and tensile. The face, edge and angle drops at different heights (300 mm, 450 mm and 600 mm) were simulated and analyzed by experiment combined with the low-density foams module in ABAQUS. For face, edge, and corner drops at different heights, simulations considering only the compressive constitutive behavior showed an error range of 8.09%-30.80% compared with experimental results, while simulations considering both compressive and tensile constitutive behaviors showed a significantly reduced error range of only 1.30%-4.86%. Including tensile constitutive behaviors in simulation analysis can reduce discrepancies between simulation results and experimental data. Therefore, considering the tensile constitutive properties of materials in actual drop simulations can help improve the accuracy of engineering analyses.

关键词

发泡聚乙烯 / 压缩本构 / 拉伸本构 / 有限元仿真

Key words

expanded polyethylene / compressive constitutive / tensile constitutive / finite element simulation

引用本文

导出引用
孙晓静, 付志强, 代兵, 唐为梁. EPE拉/压本构模型构建及其对仿真结果的影响[J]. 包装工程. 2026, 47(1): 161-168 https://doi.org/10.19554/j.cnki.1001-3563.2026.01.018
SUN Xiaojing, FU Zhiqiang, DAI Bing, TANG Weiliang. Construction of EPE Tension/Compression Constitutive Model and Its Influence on Simulation Results[J]. Packaging Engineering. 2026, 47(1): 161-168 https://doi.org/10.19554/j.cnki.1001-3563.2026.01.018
中图分类号: TB485.1   

参考文献

[1] 辛丽颖. 缓冲包装材料的应用及发展[J]. 印刷技术, 2016(10): 42-43.
XIN L Y.Application and Development of Cushioning Packaging Materials[J]. Printing Technology, 2016(10): 42-43.
[2] YOUSSEF G, REED N, HUYNH N U, et al.Experimentally-Validated Predictions of Impact Response of Polyurea Foams Using Viscoelasticity Based on Bulk Properties[J]. Mechanics of Materials, 2020, 148: 103432.
[3] 韦青, 郭彦峰, 付云岗, 等. 聚乙烯泡沫单填充纸蜂窝夹层管的轴向缓冲吸能特性[J]. 机械工程学报, 2021, 57(2): 112-120.
WEI Q, GUO Y F, FU Y G, et al.Axial Cushioning and Energy Absorption Characteristics of Polyethylene Foam Single-Filled Paper Honeycomb Sandwich Tube[J]. Journal of Mechanical Engineering, 2021, 57(2): 112-120.
[4] 陈开宇, 张慧珍, 吴悦, 等. EPE包装系统设计研究进展[J]. 合成树脂及塑料, 2025, 42(4): 78-82.
CHEN K Y, ZHANG H Z, WU Y, et al.Research Progress of EPE Packaging System Design[J]. China Synthetic Resin and Plastics, 2025, 42(4): 78-82.
[5] 叶润杰, 孙德强, 马兴元, 等. EVA闭孔泡沫静动态压缩与冲击的仿真分析[J]. 包装学报, 2025, 17(3): 36-45.
YE R J, SUN D Q, MA X Y, et al.Simulation Analysis of Static and Dynamic Compression and Impact of EVA Closed-Cell Foam[J]. Packaging Journal, 2025, 17(3): 36-45.
[6] 胡俊, 韦璐. 聚苯乙烯泡沫应力-应变模型及吸能性能研究[J]. 应用力学学报, 2015, 32(3): 430-434.
HU J, WEI L.Study on Stress-Strain Model and Energy Absorption Performance of Polystyrene Foam[J]. Chinese Journal of Applied Mechanics, 2015, 32(3): 430-434.
[7] 卢富德, 任梦成, 高德, 等. 超弹塑性泡沫连续冲击动力学行为分析的新方法[J]. 振动与冲击, 2022, 41(15): 196-200.
LU F D, REN M C, GAO D, et al.A New Method for Dynamic Behavior Analysis of Super-Elastic-Plastic Foam under Continuous Impact[J]. Journal of Vibration and Shock, 2022, 41(15): 196-200.
[8] GE C F, HUANG H Q.Corner Foam versus Flat Foam: An Experimental Comparison on Cushion Performance: Corner Foam Versus Flat Foam[J]. Packaging Technology and Science, 2015, 28(3): 217-225.
[9] 雷鹏. 聚乙烯拉伸应变速率的本构方程改进及运用[J]. 2019(13): 110-115.
LEI P.Improvement and Application of Constitutive Equation of Tensile Strain Rate of Polyethylene[J]. Packaging Engineering, 2019(13): 110-115.
[10] 张武杰, 付志强, 刘艳华, 等. 基于Sherwood-Frost模型构建聚乙烯泡沫拉伸本构[J]. 包装工程, 2022, 43(11): 161-167.
ZHANG W J, FU Z Q, LIU Y H, et al.Construction of Tensile Constitutive Model of Polyethylene Foam Based on Sherwood-Frost Model[J]. Packaging Engineering, 2022, 43(11): 161-167.
[11] 任梦成. 低密度聚乙烯高弹泡沫材料宏观本构关系研究及应用[D]. 株洲: 湖南工业大学, 2022.
REN M C.Research and Application of Macroscopic Constitutive Relationship of Low-Density Polyethylene High-Elasticity Foam Materials[D]. Zhuzhou: Hunan University of Technology, 2022.
[12] 徐绍虎, 崔爽. 基于本构模型的发泡聚乙烯缓冲特性曲线研究[J]. 包装工程, 2019, 40(15): 11-15.
XU S H, CUI S.Expanded Polyethylene Cushion Curve Based on Constitutive Model[J]. Packaging Engineering, 2019, 40(15): 11-15.
[13] LI P, ZHANG H, CHEN L L.Dynamic Response of EPS Foam in Packaging: Experimental Tests and Constitutive Modeling[J]. Polymers, 2025, 17(12): 1606.
[14] 曹端兴, 杨洋, 陈新文, 等. 连续纤维增强聚合物基体复合材料多轴疲劳研究进展[J]. 复合材料学报, 2024, 41(9): 4654-4672.
CAO D X, YANG Y, CHEN X W, et al.Research Progress on Multiaxial Fatigue of Continuous Fiber Reinforced Polymer Matrix Composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4654-4672.
[15] 陈绍杰, 赵增辉, 冯帆, 等. 双模量-强度跌落耦合特征下深部围岩应力场演化(英文)[J]. Journal of Central South University, 2022, 29(2): 680-692.
CHEN S J, ZHAO Z H, FENG F, et al.Evolution of Deep Surrounding Rock Stress Field under Dual-Modulus-Strength Drop Coupling Feature[J]. Journal of Central South University, 2022, 29(2): 680-692.
[16] 王文康, 廖瑜, 王高胜. 聚合物泡沫材料中低应变率压缩力学性能研究[J]. 合成材料老化与应用, 2018, 47(6): 26-30.
WANG W K, LIAO Y, WANG G S.Study on Mechanical Properties of Low Strain Rate Compression in Polymer Foam Materials[J]. Synthetic Materials Aging and Application, 2018, 47(6): 26-30.
[17] FU Z Q, ZHANG W J, ZHAO T, et al.Constitutive Modeling and Simulation of Polyethylene Foam under Quasi-Static and Impact Loading[J]. Journal of Cellular Plastics, 2024, 60(1): 59-78.

PDF(1835 KB)

Accesses

Citation

Detail

段落导航
相关文章

/