目的 旨在开发一种兼具高耐热性和高拉伸强度的低温聚乙烯热封膜(IPE),以解决BOPE/PE复合膜在热封制袋过程中出现的封口起皱和热致变形问题。方法 采用mPE/POE/LDPE三元共混体系构建热封层,通过分子链缠结与界面扩散的协同效应显著提升薄膜的低温热封性能;芯层和电晕层采用LLDPE和HDPE刚性骨架复合增透母料,实现力学强度、耐热性和光学性能的协同优化;系统研究薄膜的力学性能(拉伸强度、断裂伸长率)、光学性能(雾度、透光率)、摩擦因数及热封性能(热封强度、起封温度)等关键性能指标。结果 研究表明,优化后的薄膜在90 ℃低温条件下即可实现7.3⁓7.9 N/15 mm的热封强度,完全满足GB/T 10004—2008标准要求;2)与BOPE基材复合后,BOPE/IPE复合膜在120 ℃热封温度时,复合膜表面无起皱,并且热封界面完整无缺陷,热封强度达到10.595 N/15 mm,满足热封强度要求;3)薄膜具有优异的加工性能,薄膜拉伸强度达到25.5 MPa以上,摩擦因数稳定在0.05⁓0.2范围内,光学性能达到透光率(86.73±0.46)%和雾度(12.77±1.5)%,与常规PE热封膜相当。结论 本研究通过多组分协同改性与多层结构设计,成功实现了PE薄膜低温热封性、力学性能和光学性能的协同优化,为高性能包装材料的开发提供了新的技术路线。后续研究可引入纳米SiO2作为界面调控剂,通过其表面效应和空间位阻作用进一步优化热封材料的开口性能。
Abstract
The work aims to develop a low-temperature polyethylene heat-sealing film (IPE) with both high heat resistance and high tensile strength to address the issues of seal wrinkling and thermal deformation in BOPE/PE composite films during heat-sealing bag manufacturing. A heat-sealing layer was constructed using mPE/POE/LDPE ternary blend system, where molecular chain entanglement and interfacial diffusion synergistically enhanced the low-temperature heat-seal performance. The core and surface layers were reinforced with LLDPE and HDPE rigid skeleton combined with a light-transmitting masterbatch, achieving a balance of mechanical strength, heat resistance, and optical properties. Key performance indicators, including mechanical properties (tensile strength, elongation at break), optical properties (haze, light transmittance), coefficient of friction, and heat-sealing performance (seal strength, initiation temperature), were systematically investigated. The findings demonstrated that: (1) The optimized film achieved a heat-seal strength of 7.3-7.9 N/15mm at a low temperature of 90°C, fully complying with the GB/T 10004-2008 standard. (2) When laminated with a BOPE25 substrate, the BOPE/IPE composite film exhibited no surface wrinkling at 120 °C, with a defect-free sealing interface and a heat-seal strength of 10.595 N/15mm, meeting industrial requirements. (3) The film exhibited excellent processability, with a tensile strength exceeding 25.5 MPa, a stable coefficient of friction (0.05-0.2), and optical properties comparable to conventional PE films, with light transmittance of (86.73±0.46)% and haze of (12.77±1.5)%. Through multi-component synergistic modification and multi-layer structural design, this study successfully achieves the coordinated optimization of low-temperature heat-sealing performance, mechanical properties, and optical performance in PE films, providing a novel technical route for developing high-performance packaging materials. Future research could incorporate nano-SiO2 as an interfacial modifier to further improve the film’s anti-blocking properties and processing stability via surface effects and steric hindrance mechanisms.
关键词
聚乙烯单一材料 /
低温热封 /
三层共挤 /
多组分协同改性
Key words
polyethylene single material /
low-temperature heat-sealing /
three-layer co-extrusion /
multi-component synergistic modification
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 许朝华, 李育雄, 赵素芬. 软包装全PE单一材料的应用现状[J]. 塑料包装, 2021, 31(6): 1-4.
XU C H, LI Y X, ZHAO S F.Application Status of Fully PE-Based Single Material in Soft Packaging[J]. Plastics Packaging, 2021, 31(6): 1-4.
[2] 韦丽明. 全球落实2030可持续发展议程举措及塑料薄膜/片及未来包装产业可持续发展的趋势研究[J]. 塑料包装, 2022, 32(3): 1-10.
WEI L M.Implementing the 2030 Sustainable Development Goals: Initiatives and Trend Analysis for Sustainable Development in Plastic Films/Sheets and Future Packaging Industry[J]. Plastics Packaging, 2022, 32(3): 1-10.
[3] Smithers. The Future of Mono-Material Plastic Packaging Film to 2025[R]. Akron, OH: Smithers, 2020.
[4] 刘宪虎. 水辅助注射成型高密度聚乙烯(HDPE)形态结构的研究[D]. 郑州: 郑州大学, 2015.
LIU X H.Study on the Morphological Structure of High-Density Polyethylene (HDPE) via Water-Assisted Injection Molding[D]. Zhengzhou: Zhengzhou University, 2015.
[5] AGARWAL R, KHADER S A, RAY CHOWDHURY S.Effect of Electron Beam Irradiation on the Mechanical, Dynamic Mechanical, Heat-Shrinkable and Morphological Properties of Linear Low-Density Polyethylene (LLDPE)/Ethylene Butene Copolymer (EBC) Blends[J]. Journal of Radioanalytical and Nuclear Chemistry, 2025, 334(4): 2997-3007.
[6] HYNČÍK L, KOCHOVÁ P, ŠPIČKA J, et al. Identification of the LLDPE Constitutive Material Model for Energy Absorption in Impact Applications[J]. Polymers, 2021, 13(10): 1537.
[7] ZHANG M L, XIN Y.Micro-Mechanism Research into Molecular Chains Orientation Synergistically Induced by Carbon Nanotube and Shear Flow in Injection Molding[J]. Applied Sciences, 2020, 10(2): 723.
[8] 乔文强, 范晓东, 孔杰, 等. 聚合物型成核剂对HDPE结晶行为的影响[J]. 塑料工业, 2005, 33(2): 58-61.
QIAO W Q, FAN X D, KONG J, et al.Effect of Polymeric Nucleating Agent on Crystallization of HDPE[J]. China Plastics Industry, 2005, 33(2): 58-61.
[9] MITCHELL G R, PRATUMSHAT S, OLLEY R.Polyethylene and the Nucleating Agent: Dibenzylidene Sorbitol, a Neutron Scattering Study[J]. Applied Mechanics and Materials, 2019, 890: 199-204.
[10] LIN Y Y, PATEL R, CAO J, et al.Glass-Like Transparent High Strength Polyethylene Films by Tuning Drawing Temperature[J]. Polymer, 2019, 171: 180-191.
[11] SIMANKE A G, DE AZEREDO A P, DE LEMOS C, et al. Influence of Nucleating Agent on the Crystallization Kinetics and Morphology of Polypropylene[J]. Polímeros, 2016, 26(2): 152-160.
[12] ONODERA T, NUNOSHIGE J, KAWASAKI K, et al.Structure and Function of Transfer Film Formed from PTFE/PEEK Polymer Blend[J]. The Journal of Physical Chemistry C, 2017, 121(27): 14589-14596.
[13] WALTMAN R J, KOBAYASHI N, SHIRAI K, et al.The Tribological Properties of a New Cyclotriphosphazene-Terminated Perfluoropolyether Lubricant[J]. Tribology Letters, 2004, 16(1): 151-162.
[14] YUK H, ZHANG T, LIN S T, et al.Tough Bonding of Hydrogels to Diverse Non-Porous Surfaces[J]. Nature Materials, 2016, 15(2): 190-196.
[15] 彭娅, 傅强, 刘结平, 等. 茂金属聚乙烯的非等温结晶行为及其动力学研究[J]. 高等学校化学学报, 2002, 23(6): 1183-1188.
PENG Y, FU Q, LIU J P, et al.Non-isothermal Crystallization Behavior and Dynamics of Metallocene Polyethylene[J]. Chemical Journal of Chinese Universities, 2002, 23(6): 1183-1188.
[16] 李沛, 张嘉琪, 刘巍, 等. 4种低密度聚乙烯树脂的链结构及其性能[J]. 应用化学, 2019, 36(11): 1237-1247.
LI P, ZHANG J Q, LIU W, et al.Chain Structures and Performances of Four Low-Density Polyethylene (LDPE) Resins[J]. Chinese Journal of Applied Chemistry, 2019, 36(11): 1237-1247.
基金
中山市社会公益科技研究项目(2023B2045),广东省普通高校创新团队项目(2023KCXTD084)