5种酚酸对紫薯花青素辅色及稳定性的影响

赵遵乐, 李昀, 李雨, 张淳

包装工程(技术栏目) ›› 2026, Vol. 47 ›› Issue (1) : 21-30.

PDF(1936 KB)
PDF(1936 KB)
包装工程(技术栏目) ›› 2026, Vol. 47 ›› Issue (1) : 21-30. DOI: 10.19554/j.cnki.1001-3563.2026.01.003
先进材料

5种酚酸对紫薯花青素辅色及稳定性的影响

  • 赵遵乐1, 李昀1,2,*, 李雨1, 张淳1
作者信息 +

Effect of Five Phenolic Acids on the Copigmentation and Stability of Anthocyanins from Purple Sweet Potatoes

  • ZHAO Zunle1, LI Yun1,2,*, LI Yu1, ZHANG Chun1
Author information +
文章历史 +

摘要

目的 探究不同酚酸对紫薯花青素(PA)辅色效果和稳定性的影响。方法 以PA为辅色对象,选择阿魏酸(FA)、对羟基苯甲酸(PHBA)、咖啡酸(CA)、香草酸(VA)、没食子酸(GA)为辅色剂,以增色效应和红移效应为指标,探究不同浓度酚酸对PA呈色效果的影响,并初步研究在非缓冲体系中,酚酸对PA的光热稳定性。结果 经5种酚酸处理的PA均表现出显著的增色和红移效应。增色效应随酚酸浓度的增大呈现先增大后减小的趋势。酚酸浓度达到20 mmol/L时,增色效应最强。此时,5种酚酸均可使PA增色55%以上,CA和FA处理增色效果最明显,分别达110.5%、103.61%。红移效应也随酚酸浓度的增大呈现更大的偏移。光热稳定性试验中,5种酚酸均减缓了PA的热降解速率;VA、GA、PHBA和CA减缓了花青素的光降解速率,半衰期分别延长了164.33%、116.31%、108.05%和40.38%,FA加快了PA的降解,半衰期缩减了23.49%。VA和GA在光热稳定试验中表现较佳。抗氧化性试验中,酚酸与PA清除自由基过程中发挥互补作用,增强了花青素的抗氧化能力。结论 酚酸可改善PA的呈色和稳定性,研究结果可为花青素在智能指示包装领域的深入开发与利用提供理论参考。

Abstract

The work aims to investigate the effects of different phenolic acids on the copigmentation effect and stability of anthocyanins (PA) from purple sweet potatoes. With PA as the target for copigmentation, ferulic acid (FA), p-hydroxybenzoic acid (PHBA), caffeic acid (CA), vanillic acid (VA), and gallic acid (GA) were selected as copigments. With the hyperchromic effect and bathochromic shift effect as indicators, the effects of phenolic acids at different concentrations on the coloration effect of PA were explored. A preliminary study was conducted on the photothermal stability of PA with phenolic acids in a non-buffered system. PA treated with the five phenolic acids all showed significant hyperchromic and bathochromic shift effects. The hyperchromic effect first increased and then decreased with the increase in phenolic acid concentration, reaching the maximum when the phenolic acid concentration was 20 mmol/L. At this concentration, all five phenolic acids increased the color intensity of PA by more than 55%, among which CA and FA exhibited the most prominent hyperchromic effects, with and increases of 110.5% and 103.61%, respectively. The bathochromic shift effect also showed a greater degree of shift as the phenolic acid concentration increased. In the photothermal stability test, all five phenolic acids slowed down the thermal degradation rate of PA. Specifically, VA, GA, PHBA, and CA reduced the photodegradation rate of PA, with their half-lives extended by 164.33%, 116.31%, 108.05%, and 40.38%, respectively. In contrast, FA accelerated the degradation of PA, shortening its half-life by 23.49%. VA and GA demonstrated the best performance in the photothermal stability test. In the antioxidant activity test, phenolic acids and PA exerted a complementary effect in the free radical scavenging process, thereby enhancing the antioxidant capacity of PA. Phenolic acids can improve the coloration and stability of PA. The research results can provide a theoretical reference for the in-depth development and utilization of anthocyanins in the field of intelligent indicator packaging.

关键词

酚酸 / 紫薯花青素 / 辅色 / 稳定性

Key words

phenolic acids / anthocyanins from purple sweet potatoes / copigmentation / stability

引用本文

导出引用
赵遵乐, 李昀, 李雨, 张淳. 5种酚酸对紫薯花青素辅色及稳定性的影响[J]. 包装工程. 2026, 47(1): 21-30 https://doi.org/10.19554/j.cnki.1001-3563.2026.01.003
ZHAO Zunle, LI Yun, LI Yu, ZHANG Chun. Effect of Five Phenolic Acids on the Copigmentation and Stability of Anthocyanins from Purple Sweet Potatoes[J]. Packaging Engineering. 2026, 47(1): 21-30 https://doi.org/10.19554/j.cnki.1001-3563.2026.01.003
中图分类号: TB34   

参考文献

[1] ZHAO L, LIU Y Q, ZHAO L, et al.Anthocyanin-Based pH-Sensitive Smart Packaging Films for Monitoring Food Freshness[J]. Journal of Agriculture and Food Research, 2022, 9: 100340.
[2] VÁZQUEZ-GONZÁLEZ M, KUROZAWA L E, RODRÍGUEZ-PULIDO F J, et al. Simultaneous Stabilization of Blueberry Anthocyanin Colorant through Microencapsulation and Ferulic Acid Copigmentation[J]. Food Research International, 2025, 217: 116753.
[3] YUN D W, WU Y L, YONG H M, et al.Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging[J]. Foods, 2024, 13(21): 3485.
[4] 崔海鹏, 郭健龙, 王大全, 等. 花青素加工稳定性及其研究进展[J]. 食品与发酵工业, 2024, 50(13): 388-397.
CUI H P, GUO J L, WANG D Q, et al.Stability of Anthocyanins during Processing and Research Progress[J]. Food and Fermentation Industries, 2024, 50(13): 388-397.
[5] YUAN K L, WU G K, LI X S, et al.Anthocyanins Degradation Mediated by Β-Glycosidase Contributes to the Color Loss during Alcoholic Fermentation in a Structure-Dependent Manner[J]. Food Research International, 2024, 175: 113732.
[6] GUAN Y G, ZHONG Q X.The Improved Thermal Stability of Anthocyanins at pH 5.0 by Gum Arabic[J]. LWT - Food Science and Technology, 2015, 64(2): 706-712.
[7] XU H G, LIU X, YAN Q L, et al.A Novel Copigment of Quercetagetin for Stabilization of Grape Skin Anthocyanins[J]. Food Chemistry, 2015, 166: 50-55.
[8] TROUILLAS P, SANCHO-GARCÍA J C, DE FREITAS V, et al. Stabilizing and Modulating Color by Copigmentation: Insights from Theory and Experiment[J]. Chemical Reviews, 2016, 116(9): 4937-4982.
[9] ESCRIBANO-BAILON M T, SANTOS-BUELGA C. Anthocyanin Copigmentation - Evaluation, Mechanisms and Implications for the Colour of Red Wines[J]. Current Organic Chemistry, 2012, 16(6): 715-723.
[10] GENÇDAĞ E, ÖZDEMIR E E, DEMIRCI K, et al. Copigmentation and Stabilization of Anthocyanins Using Organic Molecules and Encapsulation Techniques[J]. Current Plant Biology, 2022, 29: 100238.
[11] SINGH S, SENDRI N, SHARMA B, et al.Copigmentation Effect on Red Cabbage Anthocyanins, Investigation of Their Cellular Viability and Interaction Mechanism[J]. Food Research International, 2025, 200: 115427.
[12] LI J X, BAO Y W, JIANG Q, et al.Indicator-Enhanced Starch-Based Intelligent Film for Nondestructive Monitoring of Beef Freshness: Different Structural Phenolic Acids Copigment Anthocyanin[J]. Journal of Food Engineering, 2024, 383: 112241.
[13] TÜRKYıLMAZ M, HAMZAOĞLU F, ÇIFTCI R B A, et al. Increase in Colour Stability of Pomegranate Juice Against 5-Hydroxymethylfurfural (HMF) through Copigmentation with Phenolic Acids[J]. Journal of the Science of Food and Agriculture, 2023, 103(15): 7836-7848.
[14] 吴娟弟, 张波, 韩丽婷, 等. 金属离子及酚酸添加对模拟葡萄酒溶液辅色作用的影响[J]. 食品与发酵工业, 2022, 48(6): 15-24.
WU J D, ZHANG B, HAN L T, et al.Effects of Metal Ion and Phenolic Acid Additions on the Copigmentation of Simulated Wine Solution[J]. Food and Fermentation Industries, 2022, 48(6): 15-24.
[15] 曹玉玺, 吴祖芳, 翁佩芳. 酚酸类物质对杨梅发酵酒贮藏期间色泽和挥发性风味物质的影响[J]. 食品科学, 2021, 42(11): 78-85.
CAO Y X, WU Z F, WENG P F.Effect of Phenolic Acids on Color and Volatile Flavor Compounds of Red Bayberry Wine during Storage[J]. Food Science, 2021, 42(11): 78-85.
[16] 李依娜, 邹颖, 余元善, 等. 不同酚酸对三华李清汁贮藏期间色泽稳定性的比较分析[J]. 现代食品科技, 2020, 36(7): 165-172.
LI Y N, ZOU Y, YU Y S, et al.Comparative Analysis of Color Stability of Sanhua Plum Juice during Storage with Different Phenolic Acids[J]. Modern Food Science and Technology, 2020, 36(7): 165-172.
[17] 楼乐燕, 陈虹吉, 尹培, 等. 酚酸增强杨梅清汁贮藏期间色泽稳定性[J]. 食品科学, 2019, 40(9): 220-227.
LOU L Y, CHEN H J, YIN P, et al.Enhanced Color Stability of Clear Chinese Bayberry Juice during Storage by Phenolic Acid[J]. Food Science, 2019, 40(9): 220-227.
[18] 贺红梅. 酚酸辅色花青素纤维膜用于水产品新鲜度可视化监测[D]. 长春: 吉林大学, 2023.
HE H M.Visual Monitoring of Freshness of Aquatic Products by Using Phenolic Acid Anthocyanin Copigmentation Fiber Membrane[D]. Changchun: Jilin University, 2023.
[19] 樊力华, 李金洲, 李梦琪, 等. 当归藤原花青素的纯化工艺及体外抗氧化活性[J]. 湖北农业科学, 2025, 64(6): 155-160.
FAN L H, LI J Z, LI M Q, et al.Purification Process and in Vitro Antioxidant Activity of Procyanidins from Embelia Parviflora Wall[J]. Hubei Agricultural Sciences, 2025, 64(6): 155-160.
[20] 王崑仑, 朱玲, 管立军, 等. 蓝靛果花青素的离子液体提取工艺优化及其体外抗氧化活性[J]. 食品研究与开发, 2025, 46(4): 74-81.
WANG K L, ZHU L, GUAN L J, et al.Optimization of Ionic Liquid Extraction Process and in Vitro Antioxidant Activity of Lonicera Caerulea L. Anthocyanin[J]. Food Research and Development, 2025, 46(4): 74-81.
[21] 朱丹, 李世燕, 牛广财, 等. 毛酸浆发酵过程中非酶褐变动力学研究[J]. 现代食品科技, 2017, 33(2): 115-122.
ZHU D, LI S Y, NIU G C, et al.Kinetic Study of Non-Enzymatic Browning of Physalis Pubescens L.during Fermentation[J]. Modern Food Science and Technology, 2017, 33(2): 115-122.
[22] ZHANG B, LIU R, HE F, et al.Copigmentation of Malvidin-3-O-Glucoside with Five Hydroxybenzoic Acids in Red Wine Model Solutions: Experimental and Theoretical Investigations[J]. Food Chemistry, 2015, 170: 226-233.
[23] 闫怀锋. 有机酸、酚醛对甘蔗花色苷辅色作用的研究[D]. 广州: 华南理工大学, 2017.
YAN H F.Study on Copigmentation of Organic Acids and Phenolic Aldehyde on Anthocyanins from Sugarcane[D]. Guangzhou: South China University of Technology, 2017.
[24] LV X R, LI L L, LU X M, et al.Effects of Organic Acids on Color Intensification, Thermodynamics, and Copigmentation Interactions with Anthocyanins[J]. Food Chemistry, 2022, 396: 133691.
[25] SENDRI N, SINGH S, SHARMA B, et al.Effect of Co-Pigments on Anthocyanins of Rhododendron arboreum and Insights into Interaction Mechanism[J]. Food Chemistry, 2023, 426: 136571.
[26] 唐柯, 倪高玉, 李记明, 等. 辅色素对葡萄酒单体花色苷及颜色的影响[J]. 食品与发酵工业, 2019, 45(22): 54-59.
TANG K, NI G Y, LI J M, et al.Effect of Co-Pigment on Monomeric Anthocyanin and Color of Wine[J]. Food and Fermentation Industries, 2019, 45(22): 54-59.
[27] ZHAO X, DING B W, QIN J W, et al.Intermolecular Copigmentation between Five Common 3-O-Monoglucosidic Anthocyanins and Three Phenolics in Red Wine Model Solutions: The Influence of Substituent Pattern of Anthocyanin B Ring[J]. Food Chemistry, 2020, 326: 126960.
[28] MERCALI G D, GURAK P D, SCHMITZ F, et al.Evaluation of Non-Thermal Effects of Electricity on Anthocyanin Degradation during Ohmic Heating of Jaboticaba (Myrciaria cauliflora) Juice[J]. Food Chemistry, 2015, 171: 200-205.
[29] 王夷秀. 桑葚干燥过程中花色苷降解规律研究[D]. 沈阳: 沈阳农业大学, 2017.
WANG Y X.Study on the degradation of anthocyanins in the process of mulberry drying[D]. Shenyang: Shenyang Agricultural University, 2017.
[30] 张驰, 田富林, 金舟, 沈汪洋. 酚酸生物活性研究进展[J]. 粮食与油脂, 2023, 36(05): 4-7.
ZHANG C, TIAN F L, JIN Z, et al.Research Progress on the Bioactivities of Phenolic Acids[J]. Grain and Oils, 2023, 36(5): 4-7.
[31] MIAO Y H, WANG K Z, CAO Y Q, et al.Constructing Natural Phenolic Acid Mesopores to Enhance Chemotherapy and Reduce Accompanied Intestinal Damage[J]. Journal of Controlled Release, 2025, 386: 114124.

基金

天津市淡水养殖产业技术体系创新团队(水产品加工岗位)项目(ITTFRS2021000-012)

PDF(1936 KB)

Accesses

Citation

Detail

段落导航
相关文章

/