目的 针对乏燃料容器及其密封盖的操作要求和常规操作面临的问题,设计一种密封盖吊装用专用锁具,以方便密封盖的装拆操作,确保乏燃料容器的包容完整性及乏燃料组件在装卸料、后续运输和中间贮存过程的安全。方法 基于乏燃料容器的结构特点和核电厂装卸料的操作程序,分析乏燃料容器密封盖专用提升工具的功能要求、接口要求、控制要求和环境要求等设计要求。提出密封盖专用锁具的总体设计方案,采用“四点提升法”,即使用4根均由起吊螺钉、卸扣、钢丝绳、锁具螺旋扣和旋转吊环螺钉组成的专用锁具以实现密封盖的平稳吊装;将锁具与容器专用吊具集成,以提高设备使用的便捷性。提出了密封盖专用锁具的选型准则,并对锁具的各零部件进行选型和强度校核,以验证设计方案的合理性。使用专用吊索对密封盖进行了吊装试验,以验证专用锁具的功能性和安全性。结果 进行理论计算,密封盖吊装用锁具各关键部件的理论载荷均大于实际载荷,安全裕量大于0;进行密封盖吊装试验,专用锁具在进行静载试验和动载试验前后,各承载部位的目视检测和液体渗透检测均合格。结论 理论计算结构和试验结构证明,密封盖专用索具的设计方案和选型能够满足设计要求,能够满足密封盖安装和拆卸过程中的功能要求和安全要求。为大型乏燃料容器密封盖吊装工具的设计提供了一种方法,满足了乏燃料容器操作要求和安全要求;也为乏燃料容器顺利实现国产自主供货,提高容器用户的使用体验提供了一层保障。
Abstract
The work aims to design the special rigging for the lifting of seal covers to address the operational requirements and common challenges associated with spent fuel casks and their seal covers, so as to facilitate the installation and removal of seal covers, ensuring the containment integrity of the spent fuel cask and the safety of spent fuel assemblies during loading/unloading, subsequent transportation, and interim storage. Based on the structural characteristics of spent fuel casks and the handling procedures for reactor loading and unloading in nuclear power plants, the design requirements of the special lifting device for spent fuel cask seal covers, including functional, interface, control, and environmental requirements, were analyzed. A comprehensive design scheme for the special seal cover rigging was proposed. It adopted a "four-point lifting system", utilizing four sets of specialized tools, each comprising a lifting screw, shackle, wire rope, turnbuckle, and swivel hoist ring, to ensure the stable hoisting of the cover. The rigging was integrated with the cask's dedicated spreader beam to enhance operational convenience. Selection criteria for the special seal cover rigging were established. Following the selection and structural integrity verification of all components to validate the design rationale, functional validation tests were conducted with specialized lifting slings to confirm the operational performance and safety of the rigging. Theoretical calculations demonstrated that the theoretical load capacity of all key components in the seal cover rigging exceeded the actual operational loads, resulting in a positive safety margin. Lifting tests of the seal cover were conducted. Before and after the static and dynamic load tests performed with the special rigging, visual inspection and liquid penetrant test confirmed that all load-bearing parts met the required standards. Both theoretical calculations and experimental results validate that the design and selection of the special seal cover rigging fulfills all design specifications, meeting the functional and safety requirements for both installation and removal. This work establishes a method for designing lifting tools for large spent fuel cask covers, addressing their operational and safety demands. Furthermore, it contributes to securing the Chinese supply chain for spent fuel casks and enhances the user experience.
关键词
专用锁具 /
密封盖 /
选型 /
试验 /
乏燃料容器
Key words
special rigging /
seal cover /
selection /
test /
spent fuel cask
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汪海, 童明炎, 孙胜, 等. 乏燃料运输容器研究进展[J]. 机械工程师, 2015(12): 65-69.
WANG H, TONG M Y, SUN S, et al.Research Progress of Spent Fuel Transport Container[J]. Mechanical Engineer, 2015(12): 65-69.
[2] 李越, 肖德涛, 刘新华, 等. 我国乏燃料运输现状探讨[J]. 辐射防护, 2016, 36(1): 31-39.
LI Y, XIAO D T, LIU X H, et al.Discussion on the Present Situation of Spent Fuel Transportation in China[J]. Radiation Protection, 2016, 36(1): 31-39.
[3] LI N, XU L, HAO J S.Existing Condition Analysis of Dry Spent Fuel Storage Technology[J]. Science& Technology Vision, 2016(6): 223-229.
[4] 陈瑜. 我乏燃料运输容器打破国外垄断[N]. 科技日报, 2017-12-25(1).
CHEN Y. China's Spent Fuel Transport Containers Break Foreign Monopoly[N]. Science and Technology Daily, 2017-12-25(1).
[5] 中国核电网. 我国首台百吨级球墨铸铁乏燃料运输容器研制取得关键突破[OL]// 中国核电网, 2022-07-10. https://www.cnnpn.cn/artical/31679.html.
China National Nuclear Power Network. China has Achieved a Key Breakthrough in the Development of its First 100-Tonne Ductile Iron Spent Transport Cask[OL]// China National Nuclear Power Network, 2022-07-10. https://www.cnnpn.cn/artical/31679.html.
[6] 殷勇, 李其朋, 马庆俊. 高燃耗乏燃料运输容器结构设计研究[J]. 核科学与工程, 2017, 37(2): 308-313.
YIN Y, LI Q P, MA Q J.Study on the Structural Design of High Burnup Spent Fuel Transport Cask[J]. Nuclear Science and Engineering, 2017, 37(2): 308-313.
[7] 周玉清. RY-I型乏燃料运输容器设计、试验概况[J]. 辐射防护通讯, 1991, 11(5): 51-58.
ZHOU Y Q.General Situation of Design and Test of RY-I Spent Fuel Transport Container[J]. Radiation Protection Bulletin, 1991, 11(5): 51-58.
[8] 汪俊. CNSC-24乏燃料干法贮运容器热工安全分析[D]. 哈尔滨: 哈尔滨工程大学, 2017.
WANG J.Thermal Safety Analysis of CNSC-24 Spent Fuel Transportation and Storage Cask[D]. Harbin: Harbin Engineering University, 2017.
[9] 生态环境部国家市场监督管理总局. 放射性物品安全运输规程: GB 11806—2019[S]. 北京: 中国环境出版社, 2019.
Regulations for the Safe Transport of Radioactive Material: GB 11806—2019[S]. Beijing: China Environmental Science Press, 2019.
[10] 胡冬梅, 戴波, 庄乾平, 等. 乏燃料密封容器开盖及其内容物回取技术研究[J]. 核动力工程, 2018, 39(4): 128-131.
HU D M, DAI B, ZHUANG Q P, et al.Study on Spent Fuel Storage Canister Cutting and Content Withdrawal Technologies[J]. Nuclear Power Engineering, 2018, 39(4): 128-131.
[11] 卢可可, 郑岳山, 刘帅, 等. 乏燃料干法贮存容器金属密封结构研制[J]. 核科学与工程, 2023, 43(4): 906-912.
LU K K, ZHENG Y S, LIU S, et al.The Development of the Metal Containment Structure for the Spent Fuel Dry Storage Cask[J]. Nuclear Science and Engineering, 2023, 43(4): 906-912.
[12] 谭经耀, 陈耀, 纪文英, 等. 乏燃料容器跌落事故分析与改进措施研究[J]. 核动力工程, 2024, 45(2): 166-170.
TAN J Y, CHEN Y, JI W Y, et al.Analysis of Spent Fuel Cask Dropping Accident and Research on Relevant Improvement Measures[J]. Nuclear Power Engineering, 2024, 45(2): 166-170.
[13] 程刚, 郭全全, 周耀, 等. 乏燃料容器坠落事故工况下核燃料厂房的安全性分析[J]. 振动与冲击, 2019, 38(6): 206-211.
CHENG G, GUO Q Q, ZHOU Y, et al.Safety Analysis on a Nuclear Fuel Plant Building under the Condition of a Spent Fuel Container Dropping Accident[J]. Journal of Vibration and Shock, 2019, 38(6): 206-211.
[14] 刘广东, 吴维亮, 朱贺, 等. 事故工况下乏燃料运输容器跌落分析[J]. 包装工程, 2017, 38(21): 31-34.
LIU G D, WU W L, ZHU H, et al.Drop Analysis of the Spent Nuclear Fuel Transport Cask under Accident Conditions[J]. Packaging Engineering, 2017, 38(21): 31-34.
[15] 中华人民共和国生态和环境部国家市场监督管理总局. 乏燃料运输容器结构分析的载荷组合和设计准则: GB/T 41024—2021[S]. 北京: 中国标准出版社, 2021.
Load Combination and Design Criteria for Structural Analysis of Spent Fuel Transport Cask: GB/T 41024- 2021[S]. Beijing: Standards Press of China, 2021.
[16] The American Society of Mechancial Engineers. Unified Inch Screw Threads(UN and UNR Thread Form): ASME B1.1-2019[S]. New York, The American Society of Mechancial Engineers, 2019:150.
[17] 生态环境部. 钢制乏燃料运输容器制造通用技术要求: HJ 1202—2021[S]. 北京:生态环境部, 2021: 5.
Ministry of Ecological Environment. General Technical Requirements for Fabrication of Steel Spent Fuel Transport Cask: HJ 1202-2021[S]. Beijing: Ministry of Ecological Environment, 2021: 5.