无伞空投空中降落阶段技术研究进展

郭洁, 王振威, 崔莹, 郭彦鹏, 黎蒙蒙

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 304-314.

PDF(1043 KB)
PDF(1043 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 304-314. DOI: 10.19554/j.cnki.1001-3563.2025.21.033
装备防护

无伞空投空中降落阶段技术研究进展

  • 郭洁a, 王振威b*, 崔莹a, 郭彦鹏b, 黎蒙蒙b
作者信息 +

Progress in Technical Research on Air Landing Phase of Parachute-free Airdrops

  • GUO Jiea, WANG Zhenweib*, CUI Yinga, GUO Yanpengb, LI Mengmengb
Author information +
文章历史 +

摘要

目的 对无伞空投空中降落阶段关键技术的研究进展进行综述和分析,进一步促进无伞空投技术体系化发展,为提高我国无伞空投精度和安全性提供理论依据。方法 通过系统梳理无伞空投技术发展现状,重点分析空中降落阶段技术研究现状进而预测其发展趋势。结果 研究表明,无伞空投系统在空中降落阶段的落点精度与终端速度控制方面已取得显著进展。然而,该技术体系仍面临高动态湍流环境适应性、结构轻量化与可靠性平衡,以及多体协同决策等系统级瓶颈,制约了其在复杂任务中的规模化可靠应用。结论 无伞空投空中降落阶段技术随着科技的发展,基于空气动力学的无伞空投方法和滑翔无人机技术的发展和运用将不断得到改进和完善,为空中投送和着陆提供更多的选择空间。

Abstract

The work aims to review and analyze the research progress of key technologies in the air landing phase of parachute-free airdrops, to further promote the systematic development of parachute-free airdrop technology, and provide a theoretical basis for improving the precision and safety of parachute-free airdrops in China. The research was conducted by systematically sorting out the current development status of parachute-free airdrop technology, and focusing on analyzing the current research status of air-landing phase technology and then predicting its development trend. Research indicated that unmanned aerial delivery systems achieved significant progress in landing point accuracy and terminal velocity control during the aerial descent phase. However, this technological system still faced systemic bottlenecks such as adaptability to high-dynamic turbulent environments, balancing structural lightweighting with reliability, and multi-body collaborative decision-making. These constraints limited its scalable and reliable application in complex missions. In conclusion, with the development of science and technology, the development and utilization of parachute-free airdrop air landing stage technology based on the aerodynamic-based parachute-free airdrop method and the gliding UAV technology will continue to be improved and perfected, providing more choice space for air delivery and landing.

关键词

无伞空投 / 空中降落 / 气动减速 / 智能导航 / 滑翔无人机

Key words

parachute-free airdrop / airborne landing / aerodynamic deceleration / intelligent navigation / gliding UAV

引用本文

导出引用
郭洁, 王振威, 崔莹, 郭彦鹏, 黎蒙蒙. 无伞空投空中降落阶段技术研究进展[J]. 包装工程. 2025, 46(21): 304-314 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.033
GUO Jie, WANG Zhenwei, CUI Ying, GUO Yanpeng, LI Mengmeng. Progress in Technical Research on Air Landing Phase of Parachute-free Airdrops[J]. Packaging Engineering. 2025, 46(21): 304-314 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.033
中图分类号: V249   

参考文献

[1] 杨建文, 付新华, 汪君. 精确空投导航制导控制技术现状与发展[J]. 火力与指挥控制, 2022, 47(6): 1-9.
YANG J W, FU X H, WANG J.Present Situation and Development of Precision Airdrop Navigation and Guidance Control Technology[J]. Fire Control & Command Control, 2022, 47(6): 1-9.
[2] 吕宝轩, 刘琦. 精确空投系统飞行参数的试验测量与分析[C]// 第六届中国航空科学技术大会论文集. 嘉兴, 2023: 637-643.
LYU B X, LIU Q.Experimental Measurement and Analysis of Flight Parameters for a Precision Airdrop System[C]// Proceedings of the 6th China Aeronautical Science and Technology Conference. Jiaxing, 2023: 637-643.
[3] 姜涛, 鲁航, 田德宇. 精确空投系统研究进展及趋势[J]. 现代防御技术, 2025(1): 37-44.
JIANG T, LU H, TIAN D Y.Research Progress and Trend on Precision Airdrop System[J]. Modern Defence Technology, 2025(1): 37-44.
[4] 姜剑. JPADS: 美军着力研发的联合精确空投系统[J]. 环球军事, 2009(11): 54-55.
JIANG J.JPADS: Joint Precision Airdrop System Developed by the US Army[J]. Global Military, 2009(11): 54-55.
[5] 郭洁, 郭彦鹏, 张凤先, 等. 国外无伞空投准备阶段技术研究进展[J]. 包装工程, 2025, 46(3): 253-262.
GUO J, GUO Y P, ZHANG F X, et al.Overseas Research Progress on Preparatory Phase Technology of Airdrop without Parachute[J]. Packaging Engineering, 2025, 46(3): 253-262.
[6] 郭洁, 郭彦鹏, 师帅, 等. 物资无伞空投用缓冲材料研究进展[J]. 包装工程, 2024, 45(17): 278-287.
GUO J, GUO Y P, SHI S, et al.Research Progress on Cushioning Materials for Parachute-Free Airdrops[J]. Packaging Engineering, 2024, 45(17): 278-287.
[7] 赵正戴, 南英, 谢如恒. 无伞空投体自身特性对落点精度的敏感性分析[J]. 指挥控制与仿真, 2019, 41(6): 68-73.
ZHAO Z D, NAN Y, XIE R H.Sensitivity Analysis of Landing Accuracy of Low Altitude Parachute-Free Airdrops[J]. Command Control & Simulation, 2019, 41(6): 68-73.
[8] 贾山, 高翔宇, 陈金宝, 等. 低空无伞无损空投包装设计及其自稳和缓冲性能验证[J]. 航天返回与遥感, 2022, 43(2): 1-14.
JIA S, GAO X Y, CHEN J B, et al.Design of Low Altitude Free Drop Packaging and Verification of Its Self-Stability and Cushioning Performance[J]. Spacecraft Recovery & Remote Sensing, 2022, 43(2): 1-14.
[9] 高涛, 郭然, 刘振宇, 等. 高空大型无人机下投探空观测资料分析[J]. 海南大学学报(自然科学版), 2023, 41(2): 182-190.
GAO T, GUO R, LIU Z Y, et al.Analysis of Dropsonde Observation Data of High-Altitude Large UAV[J]. Natural Science Journal of Hainan University, 2023, 41(2): 182-190.
[10] 赵敏琨, 刘小雄, 徐新龙, 等. 基于视觉的空中加油定位技术研究[J]. 计算机测量与控制, 2023, 31(6): 267-273.
ZHAO M K, LIU X X, XU X L, et al.Study on Visual Localization Technology for Aerial Refueling[J]. Computer Measurement & Control, 2023, 31(6): 267-273.
[11] 张怡. 空中加油对接阶段的锥套视觉跟踪与定位技术研究[D]. 南京: 南京航空航天大学, 2022.
ZHANG Y.Research on Visual Tracking and Location Technology of Drogue During AerialRefueling Docking Phase[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022.
[12] 李春川, 杨思长, 李云. 基于无人机空中导航定位方法的探讨[J]. 电子世界, 2019(3): 61-62.
LI C C, YANG S C, LI Y.Discussion on Air Navigation and Positioning Method Based on UAV[J]. Electronics World, 2019(3): 61-62.
[13] 孙晓冬, 王庆贺, 黎蕾, 等. 无线传感网气象监测系统上位机软件设计[J]. 电子技术与软件工程, 2022(12): 58-61.
SUN X D, WANG Q H, LI L, et al.Software Design of Upper Computer in Meteorological Monitoring System of Wireless Sensor Network[J]. Electronic Technology & Software Engineering, 2022(12): 58-61.
[14] 马艳梅. 基于时空大数据及无线传感网络的复杂气象风险预警模型构建[J]. 传感技术学报, 2021, 34(10): 1374-1378.
MA Y M.Construction of Complex Weather Risk Early Warning Model Based on Spatio-Temporal Big Data and Wireless Sensor Network[J]. Chinese Journal of Sensors and Actuators, 2021, 34(10): 1374-1378.
[15] 穆林. 基于移动终端的无线气象传感网测控系统设计与实现[D]. 南京: 东南大学, 2018.
MU L.Design and Implementation of Wireless Weather Sensor Network Measurement and Control System Based on Mobile Terminal[D]. Nanjing: Southeast University, 2018.
[16] 刘欢. 气象传感网数据修正方法研究与实现[D]. 南京: 南京信息工程大学, 2014.
LIU H.Research and Implementation of Data Correction Method for Meteorological Sensor Network[D]. Nanjing: Nanjing University of Information Science & Technology, 2014.
[17] 张俊驰, 冼彦宁. 基于深度逆强化学习的无人机实时动态避障航路规划算法[J/OL]. 软件导刊, 2025: 1-9 (2025-07-17). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=RJDK2025090800C&dbname=CJFD&dbcode=CJFQ.
ZHANG J C, XIAN Y N. Real-Time Dynamic Obstacle Avoidance Route Planning Algorithm for UAV Based on Deep Inverse Reinforcement Learning[J/OL]. Software Guide, 2025: 1-9(2025-07-17). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=RJDK2025090800C&dbname=CJFD&dbcode=CJFQ.
[18] 郭新媛. 基于几何模型优化的反舰导弹多基跨域航路规划方法[D]. 长沙: 湖南理工学院, 2025.
GUO X Y.Multi-Base Cross-Domain Route Planning Method for Anti-Ship Missiles Based on Geometric Model Optimization[D]. Changsha: Hunan Institute of Science and Technology, 2025.
[19] 王杰民, 丁云鹏, 阮开智, 等. 战场飞行器高生存力突防航路规划研究[J]. 空天防御, 2025, 8(2): 77-83.
WANG J M, DING Y P, RUAN K Z, et al.Battlefield Vehicle High Survivability Surge Route Planning Study[J]. Air&Space DEFENSE, 2025, 8(2): 77-83.
[20] 樊锐, 陈璐, 曾国奇, 等. 预警机与无人机协同航路规划技术研究[J]. 中国电子科学研究院学报, 2025, 20(2): 118-123.
FAN R, CHEN L, ZENG G Q, et al.Research on Collaborative Route Planning Technology of AWAV and UAV[J]. Journal of China Academy of Electronics and Information Technology, 2025, 20(2): 118-123.
[21] 解维奇, 豆济材, 程龙, 等. 内装式空中发射运载火箭射前姿态复合控制方法研究[J]. 计算机测量与控制, 2025, 33(6): 110-117.
XIE W Q, DOU J C, CHENG L, et al.Research on Composite Control Method for Pre-Launch Attitude of Internally Carried Air-Launched Rockets[J]. Computer Measurement & Control, 2025, 33(6): 110-117.
[22] 邓丽敏. 空中机器人的状态监测与控制技术研究[D]. 西安: 西安工程大学, 2017.
DENG L M.Research on State Monitoring and Control Technology of Aerial Robot[D]. Xi'an: Xi'an Polytechnic University, 2017.
[23] CHEN Z J, GUO H W, SHI C, et al.Design of Umbrella-Like Mechanically Deployable Aerodynamic Decelerators on the Basis of Plane-Symmetric 7R Linkages[J]. Frontiers of Mechanical Engineering, 2025, 20(3): 17.
[24] POTTER J J, MEDLIN M J, POTTER T C, et al. METHODS AND SYSTEMS FOR MASS DISTRIBUTION OF SUPPLY PACKS: CA2959321C[P].2020-04-14.
[25] WANG Y, YANG C X.Simulation and Analysis of Aerodynamic Characteristics during Parafoil Canopy Curving Process and Application by LBM[J]. Aerospace, 2024, 11(2): 118.
[26] 程涵, 余莉, 李胜全. 基于ALE的降落伞充气过程数值仿真[J]. 南京航空航天大学学报, 2012, 44(3): 290-293.
CHENG H, YU L, LI S Q.Numerical Simulation of Parachute Inflation Process Based on ALE[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(3): 290-293.
[27] 赵晓舜, 余莉, 杨雪. 充气式气动减速器的折叠方法及充气过程数值仿真[J]. 南京航空航天大学学报, 2020, 52(6): 948-956.
ZHAO X S, YU L, YANG X.A Folding Method of Inflatable Aerodynamic Decelerator and Numerical Simulation of Inflation Process[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(6): 948-956.
[28] 李广利, 李玲, 张滔, 等. 预压缩气垫包装系统静力及动力学特性研究[J]. 包装工程, 2024, 45(1): 290-298.
LI G L, LI L, ZHANG T, et al.Static and Dynamic Characteristics of Pre-Compression Air Cushion Packaging System[J]. Packaging Engineering, 2024, 45(1): 290-298.
[29] 蔡亮. 小型固定翼无人机发射和回收装置设计[D]. 南昌: 南昌航空大学, 2022.
CAI L.Design of Small Fixed UAV Launch and Recovery Device[D]. Nanchang: Nanchang Hangkong University, 2022.
[30] 薛晓鹏, 贾贺, 荣伟, 等. 高速柔性气动减速器关键技术研究进展[J]. 航空学报, 2025, 46(1): 1-31.
XUE X P, JIA H, RONG W, et al.Review of High-Speed Flexible Aerodynamic Decelerators Key Technologies[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 1-31.
[31] CETINSAYA B, REINERS D, CRUZ-NEIRA C.From PID to Swarms: A Decade of Advancements in Drone Control and Path Planning - a Systematic Review (2013-2023)[J]. Swarm and Evolutionary Computation, 2024, 89: 101626.
[32] BHAT V S, WANG Y.Revisiting the Control Systems of Autonomous Vehicles in the Agricultural Sector: A Systematic Literature Review[J]. IEEE Access, 2025, 13: 54686-54721.
[33] 刘磊, 肖斌, 刘晓军, 等. 基于双级扩展卡尔曼滤波的移动机器人视觉惯性里程计研究[J]. 自动化与仪器仪表, 2025(9): 193-197.
LIU L, XIAO B, LIU X J, et al.Research on Mobile Robot Visualinertial Odometry Based on Two-Stage Extended Kalman Filter[J]. Automation & Instrumentation, 2025(9): 193-197.
[34] 冯杨, 张云皓, 赖劲雪, 等. 面向空中加油的视觉相对定位算法研究[J]. 仪表技术, 2023(1): 38-41.
FENG Y, ZHANG Y H, LAI J X, et al.Research on Relative Positioning Vision Algorithm for Aerial Refueling[J]. Instrumentation Technology, 2023(1): 38-41.
[35] 杨智勇, 刘佳欣, 肖仲喆, 等. SSC-SRP-PHAT算法的实时低功耗空中声目标定位系统设计[J/OL]. 声学技术, 1-9[2025-10-31]. https://doi.org/10.16300/j.cnki.1000-3630.24050601.
YANG Z Y, LIU J X, XIAO Z Z, et al. Design of a Real-Time Low-Power Aerial Acoustic Target Localization System Based on the SSC-SRP-PHAT Algorithm[J/OL]. Technical Acoustics, 1-9[2025-10-31]. https://doi.org/10.16300/j.cnki.1000-3630.24050601.
[36] 宋权民. 基于空中视角先验地图的大范围场景全局定位[D]. 大连: 大连理工大学, 2024.
SONG Q M.Global Localization in Large-Scale Scenes Using Aerial Perspective Prior Maps[D]. Dalian: Dalian University of Technology, 2024.
[37] 王晓龙, 赵龙. 机载激光雷达景像匹配辅助导航方法[J]. 航空科学技术, 2024, 35(12): 40-46.
WANG X L, ZHAO L.Airborne LiDAR Scene Matching Aided Navigation Method[J]. Aeronautical Science & Technology, 2024, 35(12): 40-46.
[38] 颜丙峰. 空中目标纯方位无源定位跟踪技术研究[D]. 南京: 南京理工大学, 2021.
YAN B F.Research on Azimuth-Only Passive Location and Tracking Technology for Aerial Targets[D]. Nanjing: Nanjing University of Science and Technology, 2021.
[39] 李刚. 基于深度学习的无线电信号分类与识别技术探索[J]. 中国宽带, 2025(2): 160-162.
LI G.Deep Learning for Radio Signal Classification and Recognition[J]. China BroadBand, 2025(2): 160-162.
[40] 朱秉桢. 基于SAR图像精确匹配的辅助导航技术研究[D]. 西安: 西安电子科技大学, 2024.
ZHU B Z.Research on Aided Navigation Technology Based on Precise SAR Image Matching[D]. Xi'an: Xidian University, 2024.
[41] PARK M S, BAEK K.Quality Management System for an IoT Meteorological Sensor Network—Application to Smart Seoul Data of Things (S-DoT)[J]. Sensors, 2023, 23(5): 2384.
[42] BOREYSHO A S, KONYAEV M A, STRAKHOV S Y, et al.The Use of Laser Sensing for Solving Meteorological Problems Related to Researching and Ensuring the Safety of Space Flights[J]. Sensors, 2024, 24(21): 6818.
[43] Information Technology - Data Acquisition; New Data Acquisition Study Results Reported from Nanjing University (A Novel Meteorological Sensor Data Acquisition Approach Based on Unmanned Aerial Vehicle)[J]. Journal of Engineering, 2018, 1: 245-249.
[44] EBAID H, AZIZ M.Integrated LANDSAT ETM+ and Remote Sensing Techniques for Environmental Change Monitoring[J]. Journal of King Abdulaziz University-Meteorology, Environment and Arid Land Agriculture Sciences, 2011, 22(3): 47-66.
[45] 罗希昌. 气象观测无线传感器网络节点设计与实现[D]. 南京: 南京信息工程大学, 2014.
LUO X C.Design and Implementation of Wireless Sensor Network[D]. Nanjing: Nanjing University of Information Science & Technology, 2014.
[46] 庞小兵. 无人机温室气体、污染成分及气象参数检测系统的研发及其在立体观测中的应用[C]// 第36届中国气象学会年会论文集. 南京, 2025: 47.
PANG X B.Development of a UAV-based Detection System for Greenhouse Gases, Pollutant Components, and Meteorological Parameters and Its Application in Stereoscopic Observation[C]// Proceedings of the 36th Annual Meeting of the Chinese Meteorological Society. Nanjing, 2025: 47.
[47] 陈慧敏, 邓文斌, 张庄, 等. 无人机观测苏州低空气象要素及数值预报评估[C]// 中国气象学会. 第36届中国气象学会年会摘要集——S10 航空气象关键技术与业务应用. 南京, 2025: 250-251.
CHEN H M, DENG W B, ZHANG Z, et al.UAV Observation of Low-Altitude Meteorological Elements in Suzhou and Evaluation of Numerical Forecast[C]// Chinese Meteorological Society. Abstracts of the 36th Annual Meeting of the Chinese Meteorological Society—S10 Key Technologies and Operational Applications of Aviation Meteorology. Nanjing, 2025: 250-251.
[48] 方文, 滕海山, 孙青林, 等. 伞降航天器无损回收系统中地面网状回收平台控制研究[J]. 哈尔滨工程大学学报, 2023, 44(8): 1375-1381.
FANG W, TENG H S, SUN Q L, et al.Control of Ground Mesh Recovery Platform in Parachute Spacecraft Undamaged Recovery[J]. Journal of Harbin Engineering University, 2023, 44(8): 1375-1381.
[49] 崔锴, 赵建伟, 姚敏立, 等. 基于多模态融合的无人机通信感知一体化方法设计[J]. 现代电子技术, 2025, 48(19): 57-62.
CUI K, ZHAO J W, YAO M L, et al.Integrated Sensing and Communication with Multi-Modal Fusion for Unmanned Aerial Vehicles[J]. Modern Electronic Technique, 2025, 48(19): 57-62.
[50] 王为, 安伟刚, 宋笔锋, 等. 无人机气动/风能获取一体化设计[J/OL]. 空气动力学学报, 2025: 1-11. (2025-09-01). https://kns.cnki.net/kcms/detail/51.1192.TK.20250829.1209.004.html.
WANG W, AN W G, SONG B F, et al. Aerodynamic and Wind Energy Harvesting Integrative Design for UAVs[J/OL]. Acta Aerodynamica Sinica, 2025: 1-11(2025-09-01). https://kns.cnki.net/kcms/detail/51.1192.TK.20250829.1209.004.html.
[51] 桑宏强, 王航, 孙秀军, 等. 基于BP神经网络和非线性模型预测控制的无人机降落方法[J/OL]. 控制工程, 1-7[2025-10-31].https://doi.org/10.14107/j.cnki.kzgc.20240991.
SANG H Q, WANG H, SUN X J, et al.A UAV Landing Method Based on BP Neural Network and Nonlinear Model Predictive Control[J/OL]. Control Engineering of China, 1-7[2025-10-31].https://doi.org/10.14107/j.cnki.kzgc.20240991.
[52] 余子杰, 郑征, 李清东, 等. 基于深度强化学习的太阳能无人机航迹规划[J]. 航空学报, 2025, 46(12): 280-300.
YU Z J, ZHENG Z, LI Q D, et al.Trajectory Planning for Solar-Powered UAVs Based on Deep Reinforcement Learning[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(12): 280-300.
[53] 梁建建, 汪首坤, 何绍溟. 固定翼无人机自主着舰分段动作引导策略[J]. 航空学报, 2025, 46(13): 154-173.
LIANG J J, WANG S K, HE S M.Segmented Action Guidance Strategy for Autonomous Shipborne Landing of Fixed-Wing UAV[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 154-173.
[54] 陈杰. 基于获能滑翔的低空太阳能无人机飞行控制策略研究[D]. 南京: 南京航空航天大学, 2023.
CHEN J.Research on Flight Control Strategies for Low-Altitude Solar Unmanned Aerial Vehicles Based on Energy-Harvesting Gliding[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023.
[55] TRAN M, BINNS J, CHAI S H, et al.Optimal Control of an Autonomous Underwater Vehicle Equipped with the Collective and Cyclic Pitch Propeller[C]// 2017 11th Asian Control Conference (ASCC). Gold Coast, QLD, Australia. IEEE, 2018: 354-359.
[56] ZHANG Y H, LI A M, LI H P, et al.Robust Positioning in Extreme Environments: A Tightly Coupled GNSS- Vision-Inertial-Wheel Odometer Framework[J]. Sensor Review, 2025, 45(2): 248-257.
[57] 韦达, 何平, 李亮, 等. 基于SFIC模型的低空空域协同管理机制研究[J]. 现代交通与冶金材料, 2025, 5(5): 11-18.
WEI D, HE P, LI L, et al.Research on Collaborative Management Mechanism of Low-Altitude Airspace Based on the SFIC Model[J]. Modern Transportation and Metallurgical Materials, 2025, 5(5): 11-18.
[58] 邹琳. 基于位置预测和末端引导的反制无人机系统关键技术研究[D]. 西安: 西安建筑科技大学, 2024.
ZOU L.Research on Key Technologies of Anti-UAV System Based on Position Prediction and End-Effect Guidance[D]. Xi'an: Xi'an University of Architecture and Technology, 2024.
[59] 王利明. 无人机空中交会对接与控制问题研究[D]. 合肥: 中国科学技术大学, 2024.
WANG L M.Research on Aerial Rendezvous, Docking, and Control of Unmanned Aerial Vehicles[D]. Hefei: University of Science and Technology of China, 2024.
[60] 屈耀红. 硬式空中加油系统建模与控制[M]. 北京: 机械工业出版社, 2020.
QU Y H.Hard Air Refueling System Modeling and Control[M]. Beijing: China Machine Press, 2020.
[61] 王涛. 天地往返飞行器再入预测-校正制导与姿态控制方法研究[D]. 长沙: 国防科技大学, 2017.
WANG T.Predictor-Corrector Entry Guidance and Attitude Control for Reusable Launch Vehicle[D]. Changsha: National University of Defense Technology, 2017.
[62] 孟新宇, 刘长安, 郑贵林. 基于空中飞艇的天线姿态控制系统设计与仿真[J]. 计算机仿真, 2008, 25(6): 38-41.
MENG X Y, LIU C A, ZHENG G L.Design and Simulation of Antenna's Attitude Control System Based on Aeroboat[J]. Computer Simulation, 2008, 25(6): 38-41.
[63] 安志磊, 王凤艳, 王明常, 等. 基于无人机多姿态贴近摄影测量的高陡边坡快速航线规划及应用[J]. 吉林大学学报(地球科学版), 2025, 55(1): 209-222.
AN Z L, WANG F Y, WANG M C, et al.Rapid Flight Path Planning and Application of High and Steep Slopes Based on UAV Multi-Pose Nap-of-the-Object Photogrammetry[J]. Journal of Jilin University (Earth Science Edition), 2025, 55(1): 209-222.
[64] 孙旺, 南英, 曾冠霖, 等. 无伞空投影响因素敏感性及载机安全性分析[J]. 计算机仿真, 2021, 38(4): 35-40.
SUN W, NAN Y, ZENG G L, et al.Analysis of Sensitivity of Influencing Factors for Parachute-Free Airdrop and Safety for Aircraft[J]. Computer Simulation, 2021, 38(4): 35-40.
[65] 曾冠霖, 谢如恒, 南英, 等. 无伞空投最优投放点计算方法研究[J]. 机械制造与自动化, 2020, 49(2): 188-190.
ZENG G L, XIE R H, NAN Y, et al.Optimization of Parachute-Free Airdrop[J]. Machine Building & Automation, 2020, 49(2): 188-190.
[66] LEE T, LEOK M, MCCLAMROCH N H.Geometric Tracking Control of a Quadrotor UAV on SE(3)[C]// 49th IEEE Conference on Decision and Control (CDC). Atlanta, GA, USA. IEEE, 2011: 5420-5425.

PDF(1043 KB)

Accesses

Citation

Detail

段落导航
相关文章

/