目的 通过对LS-DYNA中M57和M83模型标定,确定不同工况条件下适用于EPS发泡材料的仿真模型,并应用于液晶显示屏EPS包装箱搬运及斜面冲击仿真。方法 对EPS发泡材料进行压缩和拉伸试验,采用LS-DYNA中M57和M83模型分别进行压缩和拉伸试验仿真,通过对比压缩和拉伸力-位移曲线,来确定适用于EPS发泡材料的仿真模型。选择不同工况下的较优模型,在LS-DYNA中对液晶显示屏包装进行搬运及斜面冲击仿真分析。结果 应变率为0.001 s-1时,M57和M83模型压缩仿真误差分别为0.9%和2.1%;拉伸仿真误差分别为25.5%和5.9%;应变率为1 s-1时,压缩仿真误差分别为1.1%和4.1%;拉伸仿真误差分别为41%和14.2%。采用M57模型对EPS包装箱进行搬运仿真,挠度误差为8.8%。采用M83模型对整托EPS包装箱进行斜面冲击仿真,冲击应力大于材料拉伸断裂应力,包装箱角部出现开裂,开裂位置与试验开裂位置吻合。结论 M57较M83能更好预测EPS的压缩力位移变化;M83较M57能更好预测EPS的拉伸力位移变化。
Abstract
The work aims to identify the simulation models suitable for expanded polystyrene (EPS) foaming materials under various working conditions through the calibration of the M57 and M83 material models in LS-DYNA and subsequently apply the models to the simulation of EPS packaging boxes for liquid crystal displays in handling and inclined plane impact scenarios. Compression and tensile tests were conducted on EPS foaming materials. The M57 and M83 models in LS-DYNA were employed to simulate compression and tensile tests, respectively. By comparing the simulated force-displacement curves with experimental data, the most appropriate simulation model for EPS foaming materials was determined. Based on this analysis, optimal models for different loading conditions were selected and used to perform handling and inclined impact simulations of liquid crystal display packaging within LS-DYNA. At a strain rate of 0.001 s-1, the compression simulation errors for the M57 and M83 models were 0.9% and 2.1%, respectively, while the tensile simulation errors were 25.5 % and 5.9%. At a strain rate of 1 s-1, the compression simulation errors were 1.1% and 4.1%, respectively, and the tensile simulation errors were 41% and 14.2%. Handling simulations of the EPS packaging box using the M57 model resulted in an 8.8% deflection error. The M83 model was utilized for inclined impact simulations of EPS packaging boxes in the entire pallet. The resulting impact stress exceeded the tensile fracture stress of materials, leading to crack formation at the corners of the packaging box. These crack locations corresponded closely with those observed in physical tests. The M57 model demonstrates superior accuracy in predicting compressive force-displacement behavior of EPS compared to the M83 model. Conversely, the M83 model provides better prediction of tensile force-displacement characteristics than the M57 model.
关键词
EPS发泡材料 /
仿真模型标定 /
搬运仿真 /
斜面冲击仿真
Key words
EPS foaming material /
calibration of simulation model /
simulation of handling operations /
inclined impact simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 宋云雪, 闫义伟. 泡沫和橡胶组合层状结构静态吸能性能研究[J]. 包装工程, 2023, 44(5): 255-261.
SONG Y X, YAN Y W.Static Buffering Energy Absorption Performance of Foam and Rubber Composite Lamellar Structures[J]. Packaging Engineering, 2023, 44(5): 255-261.
[2] KUMAR Y, KHAN S H, MOURAD A H I. Role of ABS and EPS Foams in Determining the Performance of Motorcyclist Helmet during Impact Loading[J]. International Journal of Crashworthiness, 2024, 29(4): 759-770.
[3] 卢伟锋, 刘志刚, 李祖吉, 等. 泡沫EPS非线性粘弹性本构模型在LS-DYNA空调跌落仿真中的研究[J]. 包装工程, 2020, 41(17): 133-138.
LU W F, LIU Z G, LI Z J, et al.Nonlinear Viscoelastic Constitutive Model of Foam EPS in LS-DYNA Air Conditioner Drop Simulation[J]. Packaging Engineering, 2020, 41(17): 133-138.
[4] 曾台英, 周龙炎, 许增刚, 等. 不同缓冲材料的堆码包装振动特性分析[J]. 包装工程, 2023, 44(5): 262-271.
ZENG T Y, ZHOU L Y, XU Z G, et al.Vibration Characteristics of Stacking Packaging with Different Buffer Materials[J]. Packaging Engineering, 2023, 44(5): 262-271.
[5] KASSIM N, RAHIM S Z A, Wan Abd Rahman Assyahid Wan Ibrahim, et al. Sustainable Packaging Design for Molded Expanded Polystyrene Cushion[J]. Materials, 2023, 16(4): 1723.
[6] ZOUZIAS D, DE BRUYNE G, MIRALBES R, et al.Characterization of the Tensile Behavior of Expanded Polystyrene Foam as a Function of Density and Strain Rate[J]. Advanced Engineering Materials, 2020, 22(12): 2000794.
[7] ARNESEN M, HALLSTRÖM S, HALLDIN P, et al. A Comparative Study of Constitutive Models for EPS Foam under Combined Compression and Shear Impact Loading for Helmet Applications[J]. Results in Engineering, 2024, 23: 102685.
[8] OZTURK U E, ANLAS G.Finite Element Analysis of Expanded Polystyrene Foam under Multiple Compressive Loading and Unloading[J]. Materials & Design, 2011, 32(2): 773-780.
[9] ABAYAZID F F, GHAJARI M.Viscoelastic Circular Cell Honeycomb Helmet Liners for Reducing Head Rotation and Brain Strain in Oblique Impacts[J]. Materials & Design, 2024, 239: 112748.
[10] 赵天阳, 吴佳钉, 李松, 等. 空调包装泡沫本构模型及跌落缓冲性能研究[C]// 2023年中国家用电器技术大会论文集. 宁波, 2023: 602-608.
ZHAO T Y, WU J D, LI S, et al.Constitutive Model and Drop Buffering Performance of Air Conditioning Packaging Foam[C]// Collected Papers of 2023 China Household Appliance Technology Conference. Ningbo, 2023: 602-608.
[11] LU Z W, JÓNSDÓTTIR F, ARASON S, et al. Assessment of Compressive and Flexural Properties and Stacking Strength of Expanded Polystyrene Boxes: Experimental and Simulation Study[J]. Applied Sciences, 2023, 13(10): 5852.
[12] PELLEGRINO A, TAGARIELLI V L, GERLACH R, et al.The Mechanical Response of a Syntactic Polyurethane Foam at Low and High Rates of Strain[J]. International Journal of Impact Engineering, 2015, 75: 214-221.
[13] CASTIGLIONI A, CASTELLANI L, CUDER G, et al.Relevant Materials Parameters in Cushioning for EPS Foams[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 534: 71-77.
[14] 王遥遥, 罗竹辉, 汪涵, 等. 隔振器橡胶材料本构模型参数获取及冲击性能仿真[J]. 振动与冲击, 2025, 44(6): 130-136.
WANG Y Y, LUO Z H, WANG H, et al.Parameters Acquisition of the Constitutive Model of Rubber Material Used in Isolators and the Impact Performance Simulation[J]. Journal of Vibration and Shock, 2025, 44(6): 130-136.
[15] 王志伟, 伍炼. 托盘运输包装单元冲击响应的试验与有限元分析[J]. 振动与冲击, 2021, 40(16): 124-131.
WANG Z W, WU L.Experimental Study and Finite Element Analysis of Impact Response of Pallet Stacked Transportation Packaging Units[J]. Journal of Vibration and Shock, 2021, 40(16): 124-131.
[16] 吕孟宽, 杨欣, 许述财, 等. 儿童安全座椅侧面碰撞头部保护研究[J]. 汽车工程, 2021, 43(9): 1360-1366.
LYU M K, YANG X, XU S C, et al.Research on Head Protection of Child on Safety Seat in Side Collision[J]. Automotive Engineering, 2021, 43(9): 1360-1366.