基于轻量化设计的蜂窝夹芯板结构电池包侧向抗冲击性能优化

张德生, 廖介国, 孙振鑫

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 286-295.

PDF(5305 KB)
PDF(5305 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 286-295. DOI: 10.19554/j.cnki.1001-3563.2025.21.031
装备防护

基于轻量化设计的蜂窝夹芯板结构电池包侧向抗冲击性能优化

  • 张德生1,2*, 廖介国1, 孙振鑫2
作者信息 +

Optimization of Lateral Impact Resistance of Battery Pack with Honeycomb Sandwich Panel Structure Based on Lightweight Design

  • ZHANG Desheng1,2*, LIAO Jieguo1, SUN Zhenxin2
Author information +
文章历史 +

摘要

目的 通过将蜂窝夹芯板替代传统电池包铝合金箱体框架,研究侧向冲击下,各参数对电池包质量与侵入量的影响。方法 采用正交试验设计方法,筛选出蜂窝夹芯板中面板材料和蜂窝芯层的最佳吸能组合,并据此建立电池包有限元模型,使用LS-DYNA研究3个蜂窝参数(高度、厚度、胞长)、4个面板参数(0°、±45°、90°铺层厚度)和3个箱体厚度参数对电池包侧向冲击动态响应的影响。进一步构建RBF、Kriging和RSM 3种近似模型,以质量和侵入量最小为优化目标,结合NSGA-Ⅱ算法寻求最优解。结果 准静态压缩分析显示,六边形蜂窝与CFRP面板的组合具有最佳吸能效果。由拟合度最高的RBF模型分析结果可见,蜂窝的高度和厚度的增加会导致质量和挤压力升高,而质量比吸能和侵入量则降低。经多目标优化后,电池包箱体质量较优化前减少了47.21%,质量比吸能提高了34.43%,挤压力下降22.52%且满足设计要求;侵入量虽有增加,但与电池之间仍有5.29 mm安全余量。结论 采用蜂窝夹芯板替代铝合金框架后,电池包的侧向抗冲击性能得到提高,为电池安全防护提供了平衡性能与轻量化的又一技术路径。

Abstract

The work aims to replace the traditional aluminum-alloy frame of the battery pack with honeycomb sandwich panels, to examine the effects of various parameters on the mass and intrusion of the battery pack under lateral impact. An orthogonal experimental design was adopted to identify the optimal energy-absorbing combination of face-sheet materials and honeycomb cores, on which a finite element model of the battery pack was established. Using LS-DYNA, the influences of three honeycomb parameters (height, thickness, and cell size), four face-sheet parameters (ply thicknesses at 0°, ±45°, and 90°), and three enclosure thickness parameters on the dynamic response under lateral impact were analyzed. Furthermore, three surrogate models—RBF, Kriging, and RSM—were constructed with the objectives of minimizing mass and intrusion, and the NSGA-Ⅱ algorithm was employed to obtain the optimal solution. Quasi-static compression analysis showed that the combination of a hexagonal honeycomb and CFRP face sheets provided the best energy absorption performance. Results from the RBF model with the highest fitting accuracy indicated that increasing honeycomb height and thickness led to higher mass and crushing force, while specific energy absorption and intrusion decreased. After multi-objective optimization, the mass of the battery pack enclosure decreased by 47.21%, specific energy absorption increased by 34.43%, and crushing force decreased by 22.52% while still meeting the design requirements; Although intrusion increased slightly, a safety margin of 5.29 mm remained between the battery and the enclosure. Replacing the aluminum-alloy frame with honeycomb sandwich panels thus improves the lateral impact resistance of the battery pack and provides a technical pathway that balances safety protection and lightweight design.

关键词

蜂窝夹芯板 / 侧向冲击 / 近似模型 / NSGA-Ⅱ算法 / 轻量化

Key words

honeycomb sandwich panel / lateral impact / surrogate model / NSGA-Ⅱ algorithm / lightweight design

引用本文

导出引用
张德生, 廖介国, 孙振鑫. 基于轻量化设计的蜂窝夹芯板结构电池包侧向抗冲击性能优化[J]. 包装工程. 2025, 46(21): 286-295 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.031
ZHANG Desheng, LIAO Jieguo, SUN Zhenxin. Optimization of Lateral Impact Resistance of Battery Pack with Honeycomb Sandwich Panel Structure Based on Lightweight Design[J]. Packaging Engineering. 2025, 46(21): 286-295 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.031
中图分类号: TB33   

参考文献

[1] 朱红霞, 胡淼, 李欣. 电池包侧向挤压和底部托底的仿真分析研究[J]. 电源技术, 2021, 45(6): 740-743.
ZHU H X, HU M, LI X.Simulation Analysis and Research on Lateral Extrusion and Bottom Support of Battery Pack[J]. Chinese Journal of Power Sources, 2021, 45(6): 740-743.
[2] 舒俊豪, 武小花, 杨佳珞, 等. 新能源汽车动力电池安全问题分析及改进趋势综述[J]. 电源学报, 2025, 23(3): 354-362.
SHU J H, WU X H, YANG J L, et al.Review of Analysis and Improvement Trend of New Energy Vehicle Power Battery Safety Issues[J]. Journal of Power Supply, 2025, 23(3): 354-362.
[3] 董晴雯, 王丽娟, 陈宗渝, 等. 电池包侧面碰撞仿真响应特性和安全性分析[J]. 南昌大学学报(工科版), 2020, 42(4): 386-391.
DONG Q W, WANG L J, CHEN Z Y, et al.Analysis of Response Characteristics and Safety of Battery Pack Side Impact Simulation[J]. Journal of Nanchang University (Engineering & Technology), 2020, 42(4): 386-391.
[4] 马彬, 陈晓薇, 姜文龙, 等. 基于各向异性模型的电池包结构耐撞性分析[J]. 机械设计, 2022, 39(6): 42-50.
MA B, CHEN X W, JIANG W L, et al.Analysis on Crashworthiness of Battery Pack’s Structure Based on Anisotropy Model[J]. Journal of Machine Design, 2022, 39(6): 42-50.
[5] 曲东忍, 马彬, 陈晓薇. 基于各向异性电池模型的电池包冲击响应分析[J]. 北京信息科技大学学报(自然科学版), 2019, 34(4): 11-16.
QU Dongren, MA Bin, CHEN Xiaowei.Analysis of Battery Pack Impact Responses Based on Anisotropy Battery Model[J]. Journal of Beijing Information Science & Technology University, 2019, 34(4): 11-16.
[6] HARIS A, LEE H P.Vibration, Shock and Impact Analyses of a Structural Honeycomb Battery Pack[J]. International Journal of Crashworthiness, 2023, 28(4): 552-559.
[7] MUSTAFFA Z, AL-QADAMI E H H, TOPA A, et al. Numerical Assessment of the Side Impacts on Lithium-Ion Battery Module Integrated with Honeycomb Reinforcement[J]. Engineering Failure Analysis, 2024, 161: 108290.
[8] 耿治港. 基于Hyperworks和LS-DYNA的类蜂窝结构吸能效果分析和优化[J]. 建模与仿真, 2024(1): 169-182.
GENG Z G.Analysis and Optimization of Energy Absorption Effect of Honeycomb-Like Structures Based on Hyperworks and LS-DYNA[J]. Modeling and Simulation, 2024(1): 169-182.
[9] 张豪, 常白雪, 赵凯, 等. 三种蜂窝夹芯板的抗爆性能分析[J]. 北京理工大学学报, 2022, 42(6): 557-566.
ZHANG H, CHANG B X, ZHAO K, et al.Anti-Explosion Analysis of Honeycomb Sandwich Panels with Three Kinds of Core Structures[J]. Transactions of Beijing Institute of Technology, 2022, 42(6): 557-566.
[10] ARSLAN M, KARAMANGIL M İ.Comprehensive Optimization and Design of an Electric Vehicle Battery Box Side Profile for Lightweight and Crashworthiness Using a Novel Hybrid Structure[J]. Applied Sciences, 2025, 15(4): 2037.
[11] LI R X, ZHAO Z W, BAO H H, et al.Bio-Inspired Honeycomb Structures to Improve the Crashworthiness of a Battery-Pack System[J]. Engineering Failure Analysis, 2024, 158: 108041.
[12] DHOKE A, DALAVI A.Optimal Design of Honeycomb Battery Pack Enclosure for Electric Vehicle[J]. International Journal for Simulation and Multidisciplinary Design Optimization, 2024, 15: 23.
[13] 焦萌学, 邱吉, 金涛, 等. 铝蜂窝在准静态压入下的尺寸效应[J]. 太原理工大学学报, 2021, 52(3): 478-487.
JIAO M X, QIU J, JIN T, et al.Size Effect of Aluminum Honeycomb under Quasi-Static Indentation[J]. Journal of Taiyuan University of Technology, 2021, 52(3): 478-487.
[14] 乔及森, 王晨洋, 祝伟, 等. 增强蜂窝结构面外力学行为研究[J]. 塑性工程学报, 2024, 31(10): 224-230.
QIAO J S, WANG C Y, ZHU W, et al.Study on Out-of-Plane Mechanical Behavior of Enhanced Honeycomb Structure[J]. Journal of Plasticity Engineering, 2024, 31(10): 224-230.
[15] 梅轩, 赵众豪, 周冠豪, 等. 金属/碳纤维混合材料车身构件压溃性能及耐撞性设计[J]. 振动与冲击, 2025, 44(1): 198-211.
MEI X, ZHAO Z H, ZHOU G H, et al.Crushing Characteristics and Crashworthiness Design of Metal/CFRP Hybrid Material Vehicle Body Components[J]. Journal of Vibration and Shock, 2025, 44(1): 198-211.
[16] 戴江梁, 孟祥宇, 陈琪. 基于某车型动力电池包底部撞击试验的仿真研究[J/OL]. 机械强度, 2025: 1-9(2025-02-13). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=JXQD20250213001&dbname=CJFD&dbcode=CJFQ.
DAI J L, MENG X Y, CHEN Q. Simulation Research on the Bottom Crash Test of the Battery Pack Base on an Vehicle[J/OL]. Journal of Mechanical Strength, 2025: 1-9(2025-02-13). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=JXQD20250213001&dbname=CJFD&dbcode=CJFQ.
[17] 赵庆龙, 蔡茂, 赵英男. 铝合金蜂窝吸能结构参数优化设计[J]. 科技创新与应用, 2024, 14(15): 21-24.
ZHAO Q L, CAI M, ZHAO Y N.Optimal Design of Aluminum Alloy Honeycomb Energy Absorption Structure Parameters[J]. Technology Innovation and Application, 2024, 14(15): 21-24.
[18] 冯毅, 张德良, 高翔. 基于安全、轻量化、可靠性多目标的新能源汽车电池包壳体开发[J]. 汽车工程学报, 2024, 14(2): 155-167.
FENG Y, ZHANG D L, GAO X.Development of New Energy Vehicle Battery Cases Based on Safety, Lightweighting and Reliability[J]. Chinese Journal of Automotive Engineering, 2024, 14(2): 155-167.
[19] 王超, 成艾国, 张承霖, 等. 面向刮底安全的电池包防护结构轻量化设计[J]. 中国机械工程, 2023, 34(19): 2343-2352.
WANG C, CHENG A G, ZHANG C L, et al.Lightweight Design of Protective Structures of Battery Packs for Bottom-Scraping Safety[J]. China Mechanical Engineering, 2023, 34(19): 2343-2352.

基金

黑龙江省自然科学基金联合引导项目(LH2022E100);哈尔滨市科学技术局科技计划自筹经费项目(2023ZCZJCG036)

PDF(5305 KB)

Accesses

Citation

Detail

段落导航
相关文章

/