白杨木各向异性弹塑性本构模型及验证

熊宇, 王虎, 付志强, 杨麒囡, 郑伊成, 孟庆贺

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 279-285.

PDF(2344 KB)
PDF(2344 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 279-285. DOI: 10.19554/j.cnki.1001-3563.2025.21.030
装备防护

白杨木各向异性弹塑性本构模型及验证

  • 熊宇a,b, 王虎a,b, 付志强a,b*, 杨麒囡a,b, 郑伊成a,b, 孟庆贺a,b
作者信息 +

Anisotropic Elastoplastic Constitutive Model of Poplar Wood and Its Verification

  • XIONG Yua,b, WANG Hua,b, FU Zhiqianga,b*, YANG Qinana,b, ZHENG Yichenga,b, MENG Qinghea,b
Author information +
文章历史 +

摘要

目的 为探究国产白杨木在不同纤维方向下其力学性能的变化规律,构建能够准确描述国产白杨木弹塑性变形的三维弹塑性本构模型。方法 对国产白杨木开展不同方向的力学测试,引入正弦函数改进传统的Hankinson公式,以正交各向异性理论为基础,结合弹性模量、泊松比、剪切模量和抗拉强度等试验数据对Hill屈服准则改进,建立三维弹塑性本构模型,编写UMAT材料子程序,利用ABAQUS软件对国产白杨木托盘进行仿真预测和验证。结果 改进后的Hankinson公式对白杨木弹性模量的预测误差为6.4%;在此基础上构建了白杨木的弹塑性本构模型,针对国产白杨木托盘静态压缩试验进行仿真预测,仿真载荷值与试验数据的最大误差为8.5%,该模型能有效预测托盘受压力学行为。结论 修正后的Hill屈服准则提高了预测精度,构建的三维弹塑性本构模型能准确预测国产白杨木托盘的承压性能,为白杨木在实际工程中的应用提供了理论基础。

Abstract

To clarify the variation law of mechanical properties of Chinese Populus tomentosa under different fiber directions, the work aims to construct a three-dimensional elastoplastic constitutive model that can accurately describe the elastoplastic deformation of Chinese Populus tomentosa. Multi-directional mechanical tests were conducted on Chinese Populus tomentosa. A sine function was introduced to improve the traditional Hankinson formula. To establish the three-dimensional elastoplastic constitutive model, based on the orthotropic theory, the Hill yield criterion was modified by combining experimental data such as elastic modulus, Poisson's ratio, shear modulus, tensile strength, etc. The UMAT material subroutine was developed simultaneously and the Chinese Populus tomentosa pallets were predicted and verified by ABAQUS. The prediction error of the improved Hankinson formula for the elastic modulus of Populus tomentosa was 6.4%. The elastoplastic constitutive model was built based on this formula. The static compression test of Chinese Populus tomentosa pallets was simulated by this new model. The maximum error between the simulated load value and the experimental data was 8.5%, indicating that the new model could effectively predict the compressive mechanical behavior of the pallets. In conclusion, the modified Hill yield criterion improves the prediction accuracy. The established three-dimensional elastoplastic constitutive model can accurately predict the compressive performance of Chinese Populus tomentosa pallets, providing theoretical basis for the application of Populus tomentosa in practical engineering.

关键词

国产白杨木 / 各向异性 / 本构模型 / 弹塑性 / 有限元仿真

Key words

Chinese Populus tomentosa / anisotropy / constitutive model / elastoplastic / finite element simulation

引用本文

导出引用
熊宇, 王虎, 付志强, 杨麒囡, 郑伊成, 孟庆贺. 白杨木各向异性弹塑性本构模型及验证[J]. 包装工程. 2025, 46(21): 279-285 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.030
XIONG Yu, WANG Hu, FU Zhiqiang, YANG Qinan, ZHENG Yicheng, MENG Qinghe. Anisotropic Elastoplastic Constitutive Model of Poplar Wood and Its Verification[J]. Packaging Engineering. 2025, 46(21): 279-285 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.030
中图分类号: TB484.2   

参考文献

[1] 张方文, 于文吉, 哈米提, 等. 入境木质包装材料检疫除害处理现状与分析[J]. 包装工程, 2007, 28(10): 20-23.
ZHANG F W, YU W J, HA M T, et al.Current Status and Analysis of the Entry Quarantine Treatments of Wood Packaging Materials[J]. Packaging Engineering, 2007, 28(10): 20-23.
[2] 许威, 田野. 基于纤维解离纹理方向对木材压缩与弯曲力学特性的影响分析[J]. 包装工程, 2025, 46(7): 8-16.
XU W, TIAN Y.Analysis of Effect of Fiber Dissociation Texture Direction on Compressive and Bending Mechanical Properties of Wood[J]. Packaging Engineering, 2025, 46(7): 8-16.
[3] 程瑞香. 动态热机械分析在木材加工行业的应用[J]. 木材工业, 2005, 19(4): 28-30.
CHENG R X.Applications of Dynamic Mechanical Analysis in Wood Processing Industry[J]. China Wood Industry, 2005, 19(4): 28-30.
[4] 许威. 杨木静动态压缩本构模型研究[J]. 包装工程, 2019, 40(11): 86-93.
XU W.Static and Dynamic Compression Constitutive Model of Poplar Wood[J]. Packaging Engineering, 2019, 40(11): 86-93.
[5] YOSHIHARA H.Prediction of the Off-Axis Stress-Strain Relation of Wood under Compression Loading[J]. European Journal of Wood and Wood Products, 2009, 67(2): 183-188.
[6] TABIEI A, WU J.Three-Dimensional Nonlinear Orthotropic Finite Element Material Model for Wood[J]. Composite Structures, 2000, 50(2): 143-149.
[7] 张利朋, 谢启芳, 吴亚杰, 等. 木材本构模型研究进展[J]. 建筑结构学报, 2023, 44(5): 286-304.
ZHANG L P, XIE Q F, WU Y J, et al.Research Progress on Constitutive Model for Wood[J]. Journal of Building Structures, 2023, 44(5): 286-304.
[8] OUDJENE M, KHELIFA M.Elasto-Plastic Constitutive Law for Wood Behaviour under Compressive Loadings[J]. Construction and Building Materials, 2009, 23(11): 3359-3366.
[9] AZZI V D, TSAI S W.Anisotropic Strength of Composites: Investigation Aimed at Developing a Theory Applicable to Laminated as Well as Unidirectional Composites, Employing Simple Material Properties Derived from Unidirectional Specimens Alone[J]. Experimental Mechanics, 1965, 5(9): 283-288.
[10] TSAI S W, WU E M.A General Theory of Strength for Anisotropic Materials[J]. Journal of Composite Materials, 1971, 5(1): 58-80.
[11] 全国木材标准化技术委员会 (SAC/TC 41) (SAC/TC 41). 无疵小试样木材物理力学性质试验方法第 2 部分: 试样采集和制备: GB/T 1927.2—2022[S]. 北京: 中国标准出版社,2022.
NATIONAL TECHNICAL COMMITTEE ON WOOD STANDARDIZATION OF CHINA (SAC/TC 41) (SAC/TC 41). Test Methods for Physical and Mechanical Properties of Clear Small Samples of Wood - Part 2: Sample Collection and Preparation: GB/T 1927.2-2022[S]. Beijing: Standards Press of China, 2022.
[12] 国家市场监督管理总局国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法第16部分: 顺纹抗剪强度测定: GB/T 1927.16—2022[S]. 北京: 中国标准出版社, 2022.
Standardization Administration of the People's Republic of China. Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens: Part 16: Method of Testing in Shearing Strength Parallel to Grain of Wood: GB/T 1927.16—2022[S]. Beijing: Standards Press of China, 2022.
[13] 国家市场监督管理总局国家标准化管理委员会. 无疵小试样木材物理力学性质试验方法第11部分: 顺纹抗压强度测定: GB/T 1927.11—2022[S]. 北京: 中国标准出版社, 2022.
Standardization Administration of the People's Republic of China. Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens: Part 11: Determination of Ultimate Stress in Compression Parallel to Grain: GB/T 1927.11—2022[S]. Beijing: Standards Press of China, 2022.
[14] 兰昕苑, 王正, 邹红艳, 等. 测试木材剪切模量的悬臂方板扭转振动法[J]. 林业工程学报, 2025(1): 136-143.
LAN X Y, WANG Z, ZOU H Y, et al.Measurement of Wood Shear Modulus Using Cantilever Square Plate Torsional Vibration Method[J]. Journal of Forestry Engineering, 2025(1): 136-143.
[15] 黄先宝, 卫佩行, 王泉中. 高频热压杨木单板层积材纵向弹性模量和泊松比的测定与分析[J]. 包装工程, 2013, 34(5): 1-4.
HUANG X B, WEI P X, WANG Q Z.Measurement and Analysis of Longitudinal Elastic Modulus and Poisson's Ratio of High Frequency Hot Pressing Poplar Laminated Veneer Lumber[J]. Packaging Engineering, 2013, 34(5): 1-4.
[16] 王冉, 魏思田, 柳兴华, 等. 新疆杨木物理力学性能研究[J]. 中国高新科技, 2023(16): 53-55.
WANG R, WEI S T, LIU X H, et al.Research on Physical and Mechanical Properties of Xinjiang Poplar Wood[J]. China High-Tech, 2023(16): 53-55.
[17] HANKINSON R L.Investigation of Crushing Strength of Spruce at Varying Angles of Grain[J]. Air Service Information Circular, 1921, 3(259): 130.
[18] QUADRATISCHER E, DE RUPTURE U C, ET AL. Linear Versus Quadratic Failure Criteria for In-Plane Loaded Wood-Based Panels[J]. Otto-Graf-Journal, 2001, 12: 187.
[19] QUADRATISCHER E, DE RUPTURE U, ET L, et al.Linear Versus Quadratic Failure Criteria for Inplane Loaded Wood Based Panels[J]. Otto-Graf-Journal, 2001, 12: 187.
[20] HILL R.A Theory of the Yielding and Plastic Flow of Anisotropic Metals[J]. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1948, 193(1033): 281-297.
[21] SIMO J C, HUGHES T J.Computational Inelasticity: Vol 7[M]. Berlin, Germany: Springer Science & Business Media, 2006.
[22] ESLAMI H, JAYASINGHE L B, WALDMANN D.Nonlinear Three-Dimensional Anisotropic Material Model for Failure Analysis of Timber[J]. Engineering Failure Analysis, 2021, 130: 105764.
[23] 马晓峰. ABAQUS 6.11 有限元分析从入门到精通[M]. 北京: 清华大学出版社,2014: 268.
MA X F.ABAQUS 6.11 Finite Element Analysis: From Entry to Mastery[M]. Beijing: Tsinghua University Press, 2014: 268.
[24] 崔小龙, 王泉中, 蒋身学. 基于ANSYS的机电产品包装箱底架模态分析与研究[J]. 包装与食品机械, 2014, 32(6): 35-39.
CUI X L, WANG Q Z, JIANG S X.The Modal Analysis of Mechanical Products Packing Box Chasis in ANSYS[J]. Packaging and Food Machinery, 2014, 32(6): 35-39.
[25] 李志强, 晏立熊, 梁佩, 等. 网箱托盘静动态力学性能的有限元分析[J]. 包装工程, 2016, 37(19): 17-21.
LI Z Q, YAN L X, LIANG P, et al.Finite Element Analysis of Static and Dynamic Mechanical Properties of Cage Pallet[J]. Packaging Engineering, 2016, 37(19): 17-21.

基金

天津市教委科研计划(自然科学)(2019KJ209)

PDF(2344 KB)

Accesses

Citation

Detail

段落导航
相关文章

/