基于有限元方法的塑料瓶灌封机合模机构设计与分析

周利军, 丁小锋, 蒋孚波, 王东, 李治伟, 黄利军, 孙旭东, 甘亮, 陈少剑, 许斌, 王长朋

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 231-238.

PDF(7970 KB)
PDF(7970 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 231-238. DOI: 10.19554/j.cnki.1001-3563.2025.21.025
自动化与智能化技术

基于有限元方法的塑料瓶灌封机合模机构设计与分析

  • 周利军1, 丁小锋1*, 蒋孚波1, 王东1, 李治伟1, 黄利军1, 孙旭东1, 甘亮1, 陈少剑1, 许斌2, 王长朋2
作者信息 +

Optimization Design of Clamping Mechanism for Plastic Bottles Based on Finite Element Method

  • ZHOU Lijun1, DING Xiaofeng1*, JIANG Fubo1, WANG Dong1, LI Zhiwei1, HUANG Lijun1, SUN Xudong1, GAN Liang1, CHEN Shaojian1, XU Bin2, WANG Changpeng2
Author information +
文章历史 +

摘要

目的 采用有限元仿真建模和数值分析方法对设计的合模结构进行仿真计算,查找结构设计的薄弱位置,分析合模机构受力的稳定性,为设备持续高强度的塑料瓶合模成型工序提供稳定性和强度保障。方法 通过设备合模机构的结构设计,使该工位能够满足塑料瓶的成型、灌装、封口一体化功能;基于有限元建模仿真方法,采用实际的驱动力加载曲线对设计的合模机构进行仿真分析,用于结构优化设计,并验证结构设计的合理性。结果 合模机构的主模驱动连杆接触部位、主模动臂结构突变部位的应力过大,在对其结构进行优化设计后,主模合模力降至55 078 N,降低了0.9%,副模力降至26 769 N,降低了6.8%;对主模动臂结构突变部位进行结构改进后,最大等效应力从523.3 MPa降至244.9 MPa,降幅达到53.2%。通过结构优化改善了此2个零件的应力分布。结论 合模机构的主模驱动连杆接触部位、主模动臂结构突变部位的应力集中是整个合模机构结构设计中的薄弱点,借助有限元数值仿真方法可以有效准确地对合模机构进行模拟仿真计算分析,进而对其结构进行优化设计,从而保障了塑料瓶成型过程中合模机构工位工作的强度和稳定性。

Abstract

The work aims to simulate and calculate the designed clamping structure through finite element simulation modeling and numerical analysis, to find the weak position of the structural design, analyze the stability of the force of the clamping mechanism, and provide stability and strength guarantee for the continuous high-strength plastic bottle clamping forming process of the equipment. Through the structural design of the clamping mechanism of the equipment, the station was enabled to meet the integrated functions of forming, filling and sealing of plastic bottles. Based on the finite element modeling and simulation method, the actual driving force loading curve was used to simulate and analyze the designed clamping mechanism for structural optimization design and verify the rationality of structural design. The stress at the contact part of the main mold driving connecting rod and the mutation part of the main mold boom structure of the clamping mechanism was too large. After the structural optimization design, the clamping force of the main mold was reduced to 55 078 N, which was reduced by 0.9 %, and the clamping force of the auxiliary mold was reduced to 26 769 N, which was reduced by 6.8%. The maximum equivalent stress was reduced from 523.3 MPa to 323.9 MPa after the structural improvement of the structural mutation site of the main mold boom, with a decrease of 11.71%. The stress distribution of these two parts was improved by structural optimization. The stress concentration at the contact part of the main mode drive connecting rod and the sudden change part of the main mode boom structure of the clamping mechanism is the weakest point in the structural design of the whole clamping mechanism. With the help of finite element numerical simulation method, the simulation calculation and analysis of the clamping mechanism can be effectively and accurately carried out, and then the structure can be optimized and improved to ensure the strength and stability of the clamping mechanism in the plastic bottle forming process.

关键词

有限元 / 合模机构 / 静强度 / 优化迭代

Key words

finite element / clamping mechanism / static strength / optimization iteration

引用本文

导出引用
周利军, 丁小锋, 蒋孚波, 王东, 李治伟, 黄利军, 孙旭东, 甘亮, 陈少剑, 许斌, 王长朋. 基于有限元方法的塑料瓶灌封机合模机构设计与分析[J]. 包装工程. 2025, 46(21): 231-238 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.025
ZHOU Lijun, DING Xiaofeng, JIANG Fubo, WANG Dong, LI Zhiwei, HUANG Lijun, SUN Xudong, GAN Liang, CHEN Shaojian, XU Bin, WANG Changpeng. Optimization Design of Clamping Mechanism for Plastic Bottles Based on Finite Element Method[J]. Packaging Engineering. 2025, 46(21): 231-238 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.025
中图分类号: TB484.3   

参考文献

[1] 马占峰, 牛国强, 芦珊. 中国塑料加工业(2021)[J]. 中国塑料, 2022, 36(6): 142-148.
MA Z F, NIU G Q, LU S. China Plastics Industry(2021)[J]. China Plastics, 2022, 36(6): 142-148.
[2] 赵世超, 鉴冉冉, 谢鹏程, 等. 注塑机合模技术探讨与发展[J]. 塑料, 2018, 47(2): 75-78.
ZHAO S C, JIAN R R, XIE P C, et al.Discussion and Development of Plastic Injection Molding Machine[J]. Plastics, 2018, 47(2): 75-78.
[3] 黄步明. 注塑机合模装置存在的主要问题及解决方法[J]. 中国塑料, 2001, 15(9): 76-80.
HUANG B M.Main Problems in Clamping Systems of Injection Machines and Answers to Them[J]. China Plastics, 2001, 15(9): 76-80.
[4] 岳钦杨, 周宏伟, 林武. 大型注塑机的合模机构分析[J]. 中国塑料, 2013, 27(6): 97-100.
YUE Q Y, ZHOU H W, LIN W.Analysis on Clamping Mechanism of Large Injection Molding Machines[J]. China Plastics, 2013, 27(6): 97-100.
[5] 中国塑料加工工业协会. 中国塑料工业年鉴-2021[M]. 北京: 中国轻工业出版社, 2021: 167-197.
China Plastics Processing Industry Association. China Plastics Industry Yearbook[M]. Beijing: China Light Industry Press, 2021: 167-197.
[6] 何和智, 高琦, 张涛. 国内外大型注塑机技术发展动态综述[J]. 中国塑料, 2022, 36(11): 140-149.
HE H Z, GAO Q, ZHANG T.A Review of Development Trend in Large Injection-Molding Machine Technology at Home and Abroad[J]. China Plastics, 2022, 36(11): 140-149.
[7] 廖绪钦, 邵明. 卧式挤压铸造设备双曲肘合模机构仿真优化设计[J]. 现代制造工程, 2012(1): 48-51.
LIAO X Q, SHAO M.Simulation and Optimization Design for Joint-Double Clamping Mechanism of a Horizontal Squeeze Casting Equipment[J]. Modern Manufacturing Engineering, 2012(1): 48-51.
[8] 徐丽平. 基于有限元软件ANSYS的活塞杆多场耦合计算与研究[J]. 电脑知识与技术, 2019, 15(34): 218-220.
XU L P.Thermo-Mechanical Coupling Analysis of Cylinder Piston Rod Based on ANSYS[J]. Computer Knowledge and Technology, 2019, 15(34): 218-220.
[9] 秦超, 邱建成. 超大型合模机模板力学性能的计算机工程分析[J]. 塑料包装, 2018, 28(1): 58-61.
QIN C, QIU J C.CAE on Mechanical Properties of the Mold Board of Super-Large-Scale Mold Machine[J]. Plastics Packaging, 2018, 28(1): 58-61.
[10] 李佳玥, 钱才富, 段若, 等. 注射合模机立柱应力分析和结构改进[J]. 计算机辅助工程, 2018, 27(3): 59-62.
LI J Y, QIAN C F, DUAN R, et al.Stress Analysis and Structure Improvement on Column of Injection Molding Machine[J]. Computer Aided Engineering, 2018, 27(3): 59-62.
[11] 姜杰凤, 周宏伟, 林武. 大型二板注塑机合模机构锁模有限元模拟与分析[J]. 现代制造技术与装备, 2017, 53(5): 21-23.
JIANG J F, ZHOU H W, LIN W.Finite Element Simulation and Analysis for Clamping Unit in Large Two-Plate Injection Machine[J]. Modern Manufacturing Technology and Equipment, 2017, 53(5): 21-23.
[12] 杜遥雪, 崔怀峰, 陈少杰. 注塑机合模装置动态响应及疲劳分析[J]. 五邑大学学报(自然科学版), 2010, 24(1): 1-7.
DU Y X, CUI H F, CHEN S J.An Analysis of Dynamic Response and Fatigue of Clamping Devices of the Injection Molding Machine[J]. Journal of Wuyi University (Natural Science Edition), 2010, 24(1): 1-7.
[13] 张恒. 1080T注塑机合模结构优化与设计[D]. 宁波: 宁波大学, 2021: 31-42.
ZHANG H.Optimization and Design of Clamping Structure of 1080T Injection Molding Machine[D]. Ningbo: Ningbo University, 2021: 31-42.
[14] 张小红. 基于ANSYS的T680型注塑机模壁的有限元分析研究[J]. 电子测试, 2017(22): 31-33.
ZHANG X H.Based on ANSYS T680 Type Injection Molding Machine Finite Element Analysis[J]. Electronic Test, 2017(22): 31-33.
[15] 杨娜, 杨天兴, 辛鹏. 基于Ansys的注塑机双曲肘合模机构的力学分析[J]. 合成树脂及塑料, 2022, 39(6): 48-50.
YANG N, YANG T X, XIN P.Force Analysis on Double-Toggle Clamping Mechanism of Injection Molding Machine Based on Ansys[J]. China Synthetic Resin and Plastics, 2022, 39(6): 48-50.
[16] 付琳, 欧宇, 唐承辉. 全自动注塑机设备合模机构结构优化[J]. 塑料科技, 2021, 49(7): 121-123.
FU L, OU Y, TANG C H.Structure Optimization of the Clamping Mechanism of All-Electric Injection Molding Machine Equipment[J]. Plastics Science and Technology, 2021, 49(7): 121-123.
[17] 丁小锋, 李治伟, 王东, 等. 防塑瓶链堆积装置: 中国, 218859591U[P].2023-04-14.
DING X F, LI Z W,WANG D, et al. Continuous Production Fixture: China, 218859591U[P].2023-04-14.
[18] 丁小锋, 王党旗, 周利军, 等. 连续式生产夹具: 中国, 215661323U[P].2022-01-18.
DING X F, WANG D Q, ZHOU L J, et al. Continuous Production Fixture: China, 215661323U[P].2022-01-18.
[19] 丁小锋, 苑景哲, 王党旗, 等. 用于塑料瓶合模机构的止动机构: 中国, 218488856U[P].2023-02-17.
DING X F, YUAN J Z, WANG D Q, et al. Stopping Mechanism for Plastic Bottle Clamping Mechanism: China, 218488856U[P].2023-02-17.
[20] 丁小锋, 王东, 李治伟, 等. 防塑瓶跌倒装置: 中国, 215661373U[P].2022-01-28.
DING X F, WANG D, LI Z W, et al. Device for Preventing Plastic Bottle from Falling down: China, 215661373U[P].2022-01-28.
[21] 周利军, 丁小锋, 王东, 等. 一种夹具及塑料瓶成型装置: 中国, 216885156U[P].2022-07-05.
ZHOU L J, DING X F, WANG D, et al. Clamp and Plastic Bottle Forming Device: China, 216885156U[P].2022-07-05.
[22] 丁小锋, 王党旗, 周利军, 等. 合模平衡调节机构: 中国, 218171349U[P].2022-12-30.
DING X F, WANG D Q, ZHOU L J, et al. Die Assembly Balance Adjusting Mechanism: China, 218171349U[P].2022-12-30.
[23] 王佳赟, 李国平, 柳丽, 等. 二板式注塑机锁模状态下动模板应力与疲劳分析[J]. 机械制造, 2021, 59(3): 28-31.
WANG J Y, LI G P, LIU L, et al.Analysis of Stress and Fatigue of Movable Platen in Clamping State of Two-Platen Injection Molding Machine[J]. Machinery, 2021, 59(3): 28-31.
[24] 李佳玥. 注射合模机的应力分析及疲劳断裂研究[D]. 北京: 北京化工大学, 2018: 15-20.
LI J Y.Stress Analysis and Fatigue Fracture Research of Injection Mold Clamping Machine[D]. Beijing: Beijing University of Chemical Technology, 2018: 15-20.
[25] 王诗强, 谢鹏程, 何雪涛, 等. 注塑机合模机构刚柔耦合动力学特性研究[J]. 塑料工业, 2013, 41(1): 54-57.
WANG S Q, XIE P C, HE X T, et al.Research on Dynamic Property of Clamping Mechanism of Injection Molding Machine Based on Rigid-Flexible Coupling[J]. China Plastics Industry, 2013, 41(1): 54-57.

PDF(7970 KB)

Accesses

Citation

Detail

段落导航
相关文章

/