目的 针对齿轮传动系统在高速与复杂载荷工况下,由齿侧间隙非线性变化引发的振动增强与啮合不稳定等问题,研究其对齿轮传动系统非线性动态特性的影响机制。方法 本文引入分形理论,基于W-M(Weierstrass-Mandelbrot)函数建立齿侧间隙模型,并结合Hertz接触理论与集中质量法构建多自由度斜齿轮系统非线性动力学模型。利用SolidWorks与Adams搭建虚拟样机,对比分析不同工况(空载/150 N额定载荷、12 000 r/h与18 000 r/h转速)下不同分形间隙时的系统响应。由于分形维数是决定分形间隙的关键参数,本研究将其作为控制变量,探讨其对系统响应的影响。结果 研究表明,高速空载时,低分形维数会引发非线性振动增强;而在负载情况下,高分形维数有助于提高系统稳定性,但在高速运行时会加剧高频扰动。进一步分析发现,当分形维数D=1.5时,可在动态稳定性与加工成本之间取得较优平衡。结论 本研究为斜齿轮传动系统动态特性分析提供了理论基础,并对齿侧间隙优化设计具有一定的指导意义。
Abstract
The work aims to study the vibration enhancement and engagement instability caused by the nonlinear change of tooth flank clearance in gear transmission systems under high-speed and complex load conditions and to study its influence mechanism on the nonlinear dynamic characteristics of gear transmission systems. The fractal theory was applied to establish a tooth flank clearance model based on the W-M (Weierstrass-Mandelbrot) function. Combined with the Hertz contact theory and the lumped mass method, a nonlinear dynamic model of a multi-degree-of-freedom helical gear system was constructed. A virtual prototype was built using SolidWorks and Adams, and the system responses under different conditions (no-load/150 N rated load, 12 000 r/h and 18 000 r/h) and different fractal clearances were compared and analyzed. Since the fractal dimension was a key parameter determining the fractal clearance, this study took it as a control variable to explore its impact on the system response. The research showed that at high speed and no-load, a low fractal dimension could cause an increase in nonlinear vibration, while under load, a high fractal dimension helped improve system stability but intensified high-frequency disturbances at high speeds. Further analysis revealed that at fractal dimension D=1.5, a better balance could be achieved between dynamic stability and processing cost. This study provides a theoretical basis for the dynamic characteristic analysis of helical gear transmission systems and has certain guiding significance for the optimization design of tooth flank clearance.
关键词
动力学建模 /
齿侧间隙 /
分形维数 /
Adams
Key words
dynamic modeling /
tooth flank clearance /
fractal dimension /
Adams
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHENG Z B, YAN H Z, WU J M, et al.Tribo-Dynamic Modelling and Analysis for a High-Speed Helical Gear System with Time-Varying Backlash and Friction under Elastohydrodynamic Lubrication Condition[J]. Meccanica, 2024, 59(7): 1019-1036.
[2] XIA H, MENG F S, ZHANG X, et al.Nonlinear Dynamics Analysis of Gear System Considering Time-Varying Meshing Stiffness and Backlash with Fractal Characteristics[J]. Nonlinear Dynamics, 2023, 111(16): 14851-14877.
[3] YU J H, WANG H Y, REN D D.Chaos Analysis of Single-Stage Spur Gear System Considering Backlash Fractal[J]. Journal of Vibration Engineering & Technologies, 2023, 11(7): 3481-3491.
[4] 章菊, 梁爽, 李学鋆. 考虑多因素的减速器齿轮传动系统非线性动力学特性研究[J]. 应用力学学报, 2021, 38(2): 794-801.
ZHANG J, LIANG S, LI X Y.Study on Nonlinear Dynamics of Gearbox Transmission System Considering Multiple Influencing Factors[J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 794-801.
[5] 刘杰, 赵伟强, 任望. 具有动态侧隙的齿轮传动系统动力响应分析[J]. 振动测试与诊断, 2020, 40(6): 1184-1190.
LIU J, ZHAO W Q, REN W.Dynamic Response Analysis of Gear Transmission System with Dynamic Backlash[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(6): 1184-1190.
[6] 陈奇, 汪金成, 姚志刚, 等. 计及齿面微观特征影响的齿轮非线性动力学模型研究[J]. 应用力学学报, 2019, 36(6): 1300-1306.
CHEN Q, WANG J C, YAO Z G, et al.Research on Nonlinear Dynamics Model of Gear Pair Considering Tooth Surface Micro-Characters[J]. Chinese Journal of Applied Mechanics, 2019, 36(6): 1300-1306.
[7] 李小彭, 徐金池, 潘五九, 等. 含齿面分形啮合刚度的齿轮传动系统动力学[J]. 哈尔滨工业大学学报, 2019, 51(7): 56-62.
LI X P, XU J C, PAN W J, et al.Dynamics of Gear Transmission System with Fractal Meshing Stiffness on
8 Tooth Surface[J]. Journal of Harbin Institute of Technology, 2019, 51(7): 56-62.
[8] HAN J, LI G H, TIAN X Q, et al.Nonlinear Dynamics Analysis of Gear Transmission System Based on Tooth Surface Microtopography[J]. Journal of Vibration Engineering & Technologies, 2024, 12(2): 1753-1772.
[9] YANG C B, MA H L, ZHANG T, et al.Study on Gear Contact Stiffness and Backlash of Harmonic Drive Based on Fractal Theory[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2024, 238(7): 805-814.
[10] PAN W J, LING L Y, QU H Y, et al.Early Wear Fault Dynamics Analysis Method of Gear Coupled Rotor System Based on Dynamic Fractal Backlash[J]. Journal of Computational and Nonlinear Dynamics, 2022, 17: 011003.
[11] 李永聪, 袁森, 樊战军, 等. 含间隙转塔传动系统机电联合仿真研究[J]. 机械设计与制造, 2022(4): 170-173.
LI Y C, YUAN S, FAN Z J, et al.Study on Electromechanical Joint Simulation of Transmission System with Clearance Turrets[J]. Machinery Design & Manufacture, 2022(4): 170-173.
[12] 蒲明辉, 李敏, 卢煜海, 等. 基于ADAMS对偏心齿轮分插机构的运动仿真及改进[J]. 机械传动, 2013, 37(9): 70-73.
PU M H, LI M, LU Y H, et al.Kinematic Simulation and Improvement of Transplanting Mechanism with Eccentric Gear Based on ADAMS[J]. Journal of Mechanical Transmission, 2013, 37(9): 70-73.
[13] 张华, 宋梅利, 刘永, 等. 考虑齿侧间隙的两栖无人机变形机构动态特性分析[J]. 机械制造与自动化, 2021, 50(4): 35-39.
ZHANG H, SONG M L, LIU Y, et al.Analysis of Dynamic Characteristics of Deformation Mechanism of Amphibious UAV Considering Backlash[J]. Machine Building & Automation, 2021, 50(4): 35-39.
[14] 吴启豪, 韩江桂, 张文群. 考虑齿侧间隙影响的船用人字齿轮稳定性分析[J]. 机械工程师, 2019(5): 19-23.
WU Q H, HAN J G, ZHANG W Q.Stability Analysis of Marine Herringbone Gear Considering the Influence of Backlash[J]. Mechanical Engineer, 2019(5): 19-23.
[15] 徐震, 王琪, 杨丽新. 双齿轮并联传动的负载均衡性仿真研究[J]. 现代制造工程, 2011(3): 49-53.
XU Z, WANG Q, YANG L X.Simulation Research of Load Sharing for Double-Gear Parallel Driving Systems[J]. Modern Manufacturing Engineering, 2011(3): 49-53.
[16] 范椿林, 邱晓波, 单东升, 等. 齿侧间隙作用下小口径车载机关炮身管的振动响应[J]. 机械传动, 2015, 39(3): 137-140.
FAN C L, QIU X B, SHAN D S, et al.Vibration Response of Small-Caliber Vehicular Gun Tube with Gear Backlash[J]. Journal of Mechanical Transmission, 2015, 39(3): 137-140.
[17] 沈世德, 徐学忠. 机械原理[M]. 北京: 机械工业出版社, 2009.
SHEN S D, XU X Z.Mechanisms and Machine Theory[M]. Beijing: China Machine Press, 2009.
基金
北京印刷学院校级项目(KYCPT202513);北京市教育委员会-市自然科学基金(KZ202210015019);北京市属高等学校高水平科研创新团队建设支持计划(BPHR20220107)