木霉菌处理对‘塞外红’苹果农药残留降解机制的研究

朱志峰, 张鹏, 贾晓昱, 吴迪, 段玉权, 李江阔

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 91-100.

PDF(990 KB)
PDF(990 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 91-100. DOI: 10.19554/j.cnki.1001-3563.2025.21.011
农产品保鲜与食品包装

木霉菌处理对‘塞外红’苹果农药残留降解机制的研究

  • 朱志峰1,2, 张鹏2, 贾晓昱2, 吴迪3,4, 段玉权5*, 李江阔2*
作者信息 +

Mechanism of Pesticide Residue Degradation in 'Saiwai Hong' Apple Treated with Trichoderma

  • ZHU Zhifeng1,2, ZHANG Peng2, JIA Xiaoyu2, WU Di3,4, DUAN Yuquan5*, LI Jiangkuo2*
Author information +
文章历史 +

摘要

目的 为探究木霉菌处理对‘塞外红’苹果农药残留的降解效果以及最适处理浓度对贮藏期间果实表皮抗氧化酶及相关产物活性及含量的影响。方法 以‘塞外红’苹果为试验材料,采后使用含有氯虫苯甲酰胺及多菌灵2种农药的混合农药进行浸泡处理,接着用2、4、6 g/L质量浓度的木霉菌浸泡10 min后置于冷库中贮藏,对贮藏期间农药的残留量进行测定,并分析最适处理质量浓度下过氧化物酶(POD)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、苯丙氨酸解氨酶(PAL)、抗坏血酸过氧化物酶(APX)活性及还原型谷胱甘肽(GSH)、丙二醛(MDA)、超氧阴离子(·O₂⁻)含量的变化。结果 贮藏0 d时4 g/L与6 g/L处理组的多菌灵残留量显著低于其他组,贮藏60 d时与农药组相比两个处理组多菌灵降解率均约为69%;低温贮藏期间,农药组、2 g/L及4 g/L组的氯虫苯甲酰胺残留量呈先升后降趋势,残留量排序从大到小为农药组、2 g/L组、4 g/L组,6 g/L组残留量呈波动变化,中期显著低于4 g/L组,但60 d时残留量(0.17 mg/kg)与4 g/L组(0.16 mg/kg)无显著差异(P>0.05),综合来看4 g/L为木霉菌最适处理质量浓度。与无任何处理的空白组相比,4 g/L木霉菌处理使SOD、CAT、PAL活性在贮藏期持续提升,APX、POD活性(前中期)及GSH含量(中后期)显著升高(P<0.05),同时抑制·O₂⁻生成速率并减缓MDA积累。结论 与农药处理组相比,4 g/L木霉菌处理对多菌灵与氯虫苯甲酰胺的降解效果最佳,且贮藏期间总体上提升了果实的抗逆能力,减少了果实受到的氧化损伤,提升了‘塞外红’苹果的食品安全性。

Abstract

The work aims to investigate the degradation effect of Trichoderma on pesticide residues in 'Saiwai Hong' apples, and the effect of the optimal degradation concentration on the activity and content of antioxidant enzymes and related substances in fruits during storage. The 'Saiwai Red' apples were used as experimental materials. After harvesting, a mixed pesticide containing chlorfenapyr and carbendazim was used for soaking treatment. Then, Trichoderma at concentrations of 2 g/L, 4 g/L, and 6 g/L was soaked for 10 minutes and stored in a cold storage. The residual amount of pesticides during storage was measured, and the activities of peroxidase (POD), catalase (CAT), superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX), as well as the changes in reduced glutathione (GSH), malondialdehyde (MDA), and superoxide anion (·O2-) content were analyzed at the optimal treatment concentration. At 0 days of storage, the residues of carbendazim in the 4 g/L and 6 g/L treatment groups were significantly lower than those in the other groups. At 60 days of storage, compared with the pesticide group, the degradation rates of carbendazim in both treatment groups were approximately 69%. During the low-temperature storage period, the residual levels of chlorfenapyr in the pesticide group, 2 g/L and 4 g/L groups showed an initial increase followed by a decrease trend, with the order of residual levels being: pesticide group>2 g/L group>4 g/L group (P<0.05). The residual amount in the 6 g/L group showed fluctuating changes, significantly lower than that in the 4 g/L group in the middle stage, but there was no significant difference in residual amount (0.17 mg/kg) and 4 g/L group (0.16 mg/kg) at 60 days (P>0.05), indicating that 4 g/L was the optimal concentration of Trichoderma. Compared with the blank group without any treatment, treatment with 4 g/L mycotoxin continuously increased the activities of SOD, CAT, and PAL during storage and significantly increased the activities of APX and POD (in the early and middle stages), and GSH content (in the middle and late stages) (P<0.05), while inhibiting the generation rate of ·O2- and slowing down the accumulation of MDA. Compared with the pesticide treatment group, treatment with 4 g/L Trichoderma shows the best degradation effect on carbendazim and chlorfenapyr, and comprehensively improves the fruit's stress resistance during storage, reducing oxidative damage and improving the food safety of 'Saiwai Hong' apples.

关键词

‘塞外红’苹果 / 农药残留 / 木霉菌 / 降解效果 / 抗氧化酶 / 解毒

Key words

'Saiwai Red' apple / pesticide residues / Trichoderma / degradation effect / antioxidant enzymes / detoxification

引用本文

导出引用
朱志峰, 张鹏, 贾晓昱, 吴迪, 段玉权, 李江阔. 木霉菌处理对‘塞外红’苹果农药残留降解机制的研究[J]. 包装工程. 2025, 46(21): 91-100 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.011
ZHU Zhifeng, ZHANG Peng, JIA Xiaoyu, WU Di, DUAN Yuquan, LI Jiangkuo. Mechanism of Pesticide Residue Degradation in 'Saiwai Hong' Apple Treated with Trichoderma[J]. Packaging Engineering. 2025, 46(21): 91-100 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.011
中图分类号: TB484.9    TS255.36   

参考文献

[1] 吴秀花, 敖特根, 张嘉益, 等. 塞外红苹果主要病虫害及害虫天敌概况[J]. 内蒙古林业, 2023(4): 17-20.
WU X H, AO T G, ZHANG J Y, et al.General Situation of Main Pests and Diseases and Natural Enemies of Red Apples Outside the Great Wall[J]. Inner Mongolia Forestry, 2023(4): 17-20.
[2] NIU S, LI M H, JIANG Y, et al.Removal Mechanism of Carbendazim in Water by Ozone and Remediation of Carbendazim Pollution in Soil[J]. Land Degradation and Development, 2025, 36(12): 4080-4092.
[3] YANG M X, WANG Y H, YANG G L, et al.A Review of Cumulative Risk Assessment of Multiple Pesticide Residues in Food: Current Status, Approaches and Future Perspectives[J]. Trends in Food Science & Technology, 2024, 144: 104340.
[4] TANG T, LEI C T, LV L, et al.Systematic Assessments of Ecological and Health Risks of Soil Pesticide Residues[J]. Environmental Pollution, 2025, 375: 126348.
[5] 段丽芳, 简秋, 单炜力, 等. 国际食品法典农药残留标准制定计划浅析[J]. 农药科学与管理, 2013, 34(4): 36-44.
DUAN L F, JIAN Q, SHAN W L, et al.Analysis on the Formulation Plan of Pesticide Residue Standards in Codex Alimentarius[J]. Pesticide Science and Administration, 2013, 34(4): 36-44.
[6] MIR S A, SIDDIQUI M W, DAR B N, et al.Promising Applications of Cold Plasma for Microbial Safety, Chemical Decontamination and Quality Enhancement in Fruits[J]. Journal of Applied Microbiology, 2020, 129(3): 474-485.
[7] SINGH S, KASHYAP H, SHEHATA N, et al.Carbamates-Based Pesticides: Detection, Toxicity, Biodegradation, and Sustainable Development Challenges[J]. Chemical Engineering Journal, 2025, 515: 163800.
[8] 杨海艳, 杨雨伦, 罗中泽, 等. 哈茨木霉对盐胁迫下波斯菊的促生效应[J]. 江苏农业科学, 2024, 52(24): 166-173.
YANG H Y, YANG Y L, LUO Z Z, et al.Effect of Trichoderma Harzianum on the Growth of Cosmos under Salt Stress[J]. Jiangsu Agricultural Sciences, 2024, 52(24): 166-173.
[9] 穆耀辉, 任志超, 李淑娥, 等. 哈茨木霉对商洛烟区植烟土壤细菌多样性的影响[J]. 安徽农业科学, 2023, 51(6): 152-156.
MU Y H, REN Z C, LI S E, et al.Effects of Trichoderma Harzianum on Bacterial Diversity in Tobacco Growing Soil in Shangluo Tobacco Area[J]. Journal of Anhui Agricultural Sciences, 2023, 51(6): 152-156.
[10] NAPITUPULU T P, WIBOWO D S, ILYAS M.Biocontrol of Thielaviopsis Paradoxa Causing Black Rot on Postharvest Snake Fruit by Volatile Organic Compounds of Trichoderma Harzianum[J]. Arabian Journal for Science and Engineering, 2025, 50(9): 6297-6307.
[11] SCHIERLING T E, VOGT W, VOEGELE R T, et al.Efficacy of Trichoderma SPP. and Kosakonia Sp. both Independently and Combined with Fungicides Against Botrytis Cinerea on Strawberries[J]. Antibiotics, 2024, 13(9): 912.
[12] 曹森, 吉宁, 马超, 等. 1-MCP结合哈茨木霉菌对樱桃番茄贮藏的保鲜效果[J]. 食品工业科技, 2019, 40(1): 262-268.
CAO S, JI N, MA C, et al.Effects of 1-MCP Combined with Trichoderma Harzianum on Preservation of Cherry Tomato[J]. Science and Technology of Food Industry, 2019, 40(1): 262-268.
[13] 曹建康, 姜微波, 赵玉梅. 果蔬采后生理生化实验指导[M]. 北京: 中国轻工业出版社, 2007.
CAO J K, JIANG W B, ZHAO Y M.Guidance on Postharvest Physiological and Biochemical Experiments of Fruits and Vegetables[M]. Beijing: China Light Industry Press, 2007.
[14] 陈龙, 袁宏丽, 陈栋梁, 等. 发酵液中谷胱甘肽含量测定方法的比较[J]. 理化检验-化学分册, 2010, 46(8): 876-878.
CHEN L, YUAN H L, CHEN D L, et al.Comparative Study on Methods for Determination of Glutathione in Fermentation Liquor[J]. Physical Testing and Chemical Analysis (Part B (Chemical Analysis)), 2010, 46(8): 876-878.
[15] HUANG X, WU Y Q, ZHANG S S, et al.Changes in Antioxidant Substances and Antioxidant Enzyme Activities in Raspberry Fruits at Different Developmental Stages[J]. Scientia Horticulturae, 2023, 321: 112314.
[16] LU W, LI W Q, ZHAO K K, et al.Blue Light Irradiation Combined with Low-Temperature Storage Further Enhances Postharvest Quality of Strawberries through Improving Antioxidant Defense and Cell Wall Metabolic Activities[J]. Food Chemistry: X, 2025, 25: 102115.
[17] 魏增宇. 1——MCP结合CO2处理对鲜切苹果贮藏期间品质变化影响[D]. 天津: 天津科技大学, 2019.
WEI Z Y.Effects of 1-MCP and CO,Treatments on Quality Changesof Fresh-cut Apples during Storage[D]. Tianjin: Tianjin University of Science & Technology, 2019.
[18] SINGCHA P, KHAKSAR G, SIRIJAN M, et al.Durian (Durio Zibethinus L.) Fruit: A Superior Dietary Source of Natural Glutathione and Γ-Glutamylcysteine[J]. Journal of Food Composition and Analysis, 2024, 127: 105975.
[19] 李海峰, 王瑞华, 韩琛. 农药胁迫对植物抗氧化系统的研究现状[J]. 农产品加工, 2018(3): 59-62.
LI H F, WANG R H, HAN C.The Research Status of Pesticide Stress to Antioxidant System in Plants[J]. Farm Products Processing, 2018(3): 59-62.
[20] LI X.Photodegradation of Carbendazim in Aqueous Solution Under UV Irradiation: Kinetics, Products, and Toxicity Assessment[J]. Chemosphere, 2018, 209: 856-864.
[21] ZHOU L, HOU Z G, PAN H Y.Degradation of Anthranilic Diamide Insecticide Tetrachlorantraniliprole in Water: Kinetics, Degradation Pathways, Product Identification and Toxicity Assessment[J]. Science of the Total Environment, 2022, 836: 155448.
[22] WU M, LI G L, LI P F, et al.Assessing the Ecological Risk of Pesticides should Not Ignore the Impact of Their Transformation Byproducts - the Case of Chlorantraniliprole[J]. Journal of Hazardous Materials, 2021, 418: 126270.
[23] 刘莉苹. 农药中隐性添加虱螨脲、氟铃脲、氯虫苯甲酰胺等非法成分深度剖析研究[J]. 江西化工, 2022(6): 11-14.
LIU L P.Study on the In-Depth Analysis of Illegal Ingredients Hidden in Pesticides, such as Lufenurcn, Hexaflumuron and Chlorantraniliprole[J]. Jiangxi Chemical Industry, 2022(6): 11-14.
[24] ZHAO H D, LIU B D, ZHANG W L, et al.Enhancement of Quality and Antioxidant Metabolism of Sweet Cherry Fruit by Near-Freezing Temperature Storage[J]. Postharvest Biology and Technology, 2019, 147: 113-122.
[25] 杨洋, 陈琪琪, 郭丽红, 等. 低温维持果蔬采后活性氧代谢平衡的抗氧化转录调控机制研究进展[J]. 食品工业科技, 2023, 44(5): 451-458.
YANG Y, CHEN Q Q, GUO L H, et al.Research Progress on Regulation of Antioxidant Transcription in Reactive Oxygen Species Metabolism of Postharvest Fruits and Vegetables during Low Temperature Storage[J]. Science and Technology of Food Industry, 2023, 44(5): 451-458.
[26] SALTVEIT M E.Wound Induced Changes in Phenolic Metabolism and Tissue Browning Are Altered by Heat Shock[J]. Postharvest Biology and Technology, 2000, 21(1): 61-69.
[27] 贾丙志. 多功能木霉对纤维素和农药的降解特性研究[D]. 济南: 山东师范大学, 2010.
JIA B Z.Multi-function trichoderma degradation characteristics against cellulose and pesticides[D]. Jinan: Shandong Normal University, 2010.
[28] 孙佳楠. 深绿木霉T23对敌敌畏的降解特性及机制[D]. 上海: 上海交通大学, 2020.
SUN J N.Characteristics and Mechanisms of Dichlorvos Degradation by Trichoderma Atroviride Strain T23[D]. Shanghai: Shanghai Jiao Tong University, 2020.
[29] 陈秋森, 陈凤琼, 刘汉林, 等. 外源褪黑素对菜用大豆残留百菌清和多菌灵降解的影响[J]. 中国油料作物学报, 2022, 44(4): 893-900.
CHEN Q S, CHEN F Q, LIU H L, et al.Effect of Exogenous Melatonin on Degradation of Chlorothalonil and Carbendazim Residues in Vegetable Soybean[J]. Chinese Journal of Oil Crop Sciences, 2022, 44(4): 893-900.
[30] ZHU L J, YU H T, DAI X M, et al.Effect of Methyl Jasmonate on the Quality and Antioxidant Capacity by Modulating Ascorbate-Glutathione Cycle in Peach Fruit[J]. Scientia Horticulturae, 2022, 303: 111216.
[31] 李佩艳, 尹飞, 党东阳, 等. 草酸处理对桂七芒果冷害及细胞壁代谢的影响[J]. 核农学报, 2020, 34(12): 2742-2748.
LI P Y, YIN F, DANG D Y, et al.Effect of Oxalic Acid Treatment on Chilling Injury and Cell Wall Metabolism of Guiqi Mango[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(12): 2742-2748.
[32] 徐俊南, 王静, 常婷婷, 等. 还原型谷胱甘肽在果酒酿造中的应用[J]. 中国酿造, 2018, 37(7): 1-5.
XU J N, WANG J, CHANG T T, et al.Application of Reduced Glutathione in Fruit Wine Brewing[J]. China Brewing, 2018, 37(7): 1-5.

基金

国家重点研发计划(2022YFD1600504)

PDF(990 KB)

Accesses

Citation

Detail

段落导航
相关文章

/