多功能有机硅泡沫的功能设计及包装领域应用潜力研究

贾凌杰, 贾贤补, 杨豪杰, 陈尔余

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 41-51.

PDF(7570 KB)
PDF(7570 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 41-51. DOI: 10.19554/j.cnki.1001-3563.2025.21.005
先进材料

多功能有机硅泡沫的功能设计及包装领域应用潜力研究

  • 贾凌杰, 贾贤补, 杨豪杰, 陈尔余*
作者信息 +

Functional Design and Packaging Application Potential of Multi-functional Organic Silicone Foam

  • JIA Lingjie, JIA Xianbu, YANG Haojie, CHEN Eryu*
Author information +
文章历史 +

摘要

目的 系统梳理有机硅泡沫制备方法与性能改性策略,揭示其在轻量减震与高效阻燃等方面的性能调控机制,为开发多功能有机硅泡沫材料提供理论依据与技术路径。方法 从有机硅泡沫的核心制备方法出发,着重介绍其泡孔结构调控、聚合物基体增强与纳米复合改性等轻量减震策略,以及添加型、本征型与表面处理型阻燃改性途径,并总结其在包装领域的应用前景,为开发多功能有机硅泡沫材料提供理论参考与技术方向。结果 有机硅泡沫可通过优化泡孔结构与改性基体实现轻质与高减震性;通过物理共混阻燃剂、设计本征阻燃聚合物分子链以及构筑表面阻燃涂层等途径可提高有机硅泡沫的阻燃性。结论 有机硅泡沫制备与改性技术日趋成熟,是新一代高性能防护包装的理想材料,未来应着力发展智能响应型泡沫体系,并拓展其在极端环境下的适应能力。

Abstract

The work aims to systematically sort out the preparation methods and performance modification strategies of organic silicone foam, reveal its performance regulation mechanisms in terms of lightweight, shock absorption and high-efficiency flame retardancy, and provide a theoretical basis and technical paths for the development of multifunctional silicone foam materials. Starting from the core preparation method of organic silicone foam, this paper focused on the introduction of lightweight and shock absorption strategies such as cell structure regulation, polymer matrix reinforcement and nanocomposite modification, as well as additive, intrinsic and surface treatment flame retardant modification methods, and summarized its application prospects in the packaging field to provide a theoretical reference and technical direction for the development of multi-functional silicone foam materials. The results showed that the organic silicone foam could achieve lightweight and efficient shock absorption by optimizing the cell structure and modifying the matrix, and the flame retardancy of silicone foam could be improved through physical blending of flame retardants, design of intrinsic flame retardant polymer molecular chains, and construction of surface flame retardant coatings. The preparation and modification technology of organic silicone foam is becoming mature, and it is an ideal material for a new generation of high-performance protective packaging. In the future, efforts should be made to develop intelligent responsive foam systems, and expand their adaptability in extreme environments.

关键词

有机硅泡沫 / 减震 / 阻燃 / 包装材料

Key words

organic silicone foam / shock absorption / flame retardancy / packaging materials

引用本文

导出引用
贾凌杰, 贾贤补, 杨豪杰, 陈尔余. 多功能有机硅泡沫的功能设计及包装领域应用潜力研究[J]. 包装工程. 2025, 46(21): 41-51 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.005
JIA Lingjie, JIA Xianbu, YANG Haojie, CHEN Eryu. Functional Design and Packaging Application Potential of Multi-functional Organic Silicone Foam[J]. Packaging Engineering. 2025, 46(21): 41-51 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.005
中图分类号: TB34    TB48   

参考文献

[1] DAI B W, LIU Q, JIN F, et al.Adhesion Behaviors and Kinetics at Silicone Foam/Metal Interfaces[J]. Polymer Degradation and Stability, 2024, 225: 110772.
[2] REBANE I, LEVIN K J, MÄEORG U, et al. Enhanced Low-Density Silicone Foams Blown by Water-Hydroxyl Blends[J]. Polymers, 2023, 15(22): 4425.
[3] 孙锦游, 赵一囡, 任若菡, 等. 多功能阻燃有机硅泡沫材料的研究进展[J]. 有机硅材料, 2025, 39(2): 65-71.
SUN J Y, ZHAO Y N, REN R H, et al.Research Progress of Multifunctional Flame-Retardant Silicone Foam[J]. Silicone Material, 2025, 39(2): 65-71.
[4] MARL S, GIESEN R U, HEIM H P.Mullins Effect of Foamed Liquid Silicone Elastomers[J]. Journal of Cellular Plastics, 2025, 61(3): 161-181.
[5] CHEN Z Y, LIU S C, WU Y X, et al.Chemical-Physical Synergistic Assembly of MXene/CNT Nanocoatings in Silicone Foams for Reliable Piezoresistive Sensing in Harsh Environments[J]. Small, 2024, 20(51): 2406102.
[6] XU Y Z, ZHAO D, FANG X L, et al.“Mica/Silicate Glass Frit-Armored Skeleton” in PDMS Composite Foam for Improving Fire-Proofing Performance[J]. Journal of Applied Polymer Science, 2023, 140(23): e53938.
[7] CALABRESE L, BONACCORSI L, FRENI A, et al.Silicone Composite Foams for Adsorption Heat Pump Applications[J]. Sustainable Materials and Technologies, 2017, 12: 27-34.
[8] 孙才英, 董子琳, 董懿嘉, 等. 阻燃剂甲基膦酸二甲酯对硬质聚氨酯泡沫性能的影响[J]. 塑料科技, 2017, 45(3): 90-94.
SUN C Y, DONG Z L, DONG Y J, et al.Effect of Flame Retardant Dimethyl Methylphosphonate on Properties of Rigid Polyurethane Foam[J]. Plastics Science and Technology, 2017, 45(3): 90-94.
[9] ȘERBAN D A, LINUL E.Fatigue Behaviour of Closed-Cell Polyurethane Rigid Foams[J]. Engineering Failure Analysis, 2023, 154: 107728.
[10] DONG M Y, WANG G, ZHANG X N, et al.An Overview of Polymer Foaming Assisted by Supercritical Fluid[J]. Advanced Composites and Hybrid Materials, 2023, 6(6): 207.
[11] HUANG E B, LIAO X, ZHAO C X, et al.Effect of Unexpected CO2’s Phase Transition on the High-Pressure Differential Scanning Calorimetry Performance of Various Polymers[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1810-1818.
[12] 朱晓帅. 基于超临界CO2发泡的TPU泡孔形态及表面微结构调控[D]. 郑州: 郑州大学, 2023.
ZHU X S.Regulation of TPU Pore Morphology and Surface Microstructure Based on Supercritical CO2 Foaming[D]. Zhengzhou: Zhengzhou University, 2023.
[13] YAN H, WANG K, ZHAO Y.Fabrication of Silicone Rubber Foam with Tailored Porous Structures by Supercritical CO2[J]. Macromolecular Materials and Engineering, 2017, 302(2): 1600377.
[14] TANG W Y, LIAO X, ZHANG Y, et al.Cellular Structure Design by Controlling Rheological Property of Silicone Rubber in Supercritical CO2[J]. The Journal of Supercritical Fluids, 2020, 164: 104913.
[15] MÉTIVIER T, CASSAGNAU P. Foaming Behavior of Silicone/Fluorosilicone Blends[J]. Polymer, 2018, 146: 21-30.
[16] PENG L G, LEI L, LIU Y Q, et al.Improved Mechanical and Sound Absorption Properties of Open Cell Silicone Rubber Foam with NaCl as the Pore-Forming Agent[J]. Materials, 2021, 14(1): 195.
[17] MARL S, GIESEN R U, HEIM H P.Liquid Silicone Rubber Foamed with Thermoplastic Expandable Microspheres[J]. Materials, 2022, 15(11): 3779.
[18] HAN T L, GUO B F, ZHANG G D, et al.Facile Synthesis of Hollow Glass Microsphere Filled PDMS Foam Composites with Exceptional Lightweight, Mechanical Flexibility, and Thermal Insulating Property[J]. Molecules, 2023, 28(6): 2614.
[19] 夏乔琦, 李扬, 曹承飞, 等. 硅橡胶泡沫复合材料的制备、性能与应用[J]. 中国材料进展, 2018, 37(3): 168-177.
XIA Q Q, LI Y, CAO C F, et al.Preparation, Properties and Application of Silicone Rubber Foam Composites[J]. Materials China, 2018, 37(3): 168-177.
[20] XIE Z X, WEI Z J, MENG Y Y, et al.Robust CoFe2O4@Carbon Nanotube/Polydimethylsiloxane Foams with Low Thermal Conductivity for Electromagnetic Interference Shielding[J]. ACS Applied Nano Materials, 2023, 6(23): 21733-21740.
[21] ALEX A S, THOMAS D, MANU S K, et al.Addition-Cure, Room Temperature Vulcanizing Silicone Elastomer Based Syntactic Foams with Glass and Ceramic Microballoons[J]. Polymer Bulletin, 2018, 75(2): 747-767.
[22] RUBINSZTAJN S, CHOJNOWSKI J, MIZERSKA U.Tris(Pentafluorophenyl)Borane-Catalyzed Hydride Transfer Reactions in Polysiloxane Chemistry-Piers-Rubinsztajn Reaction and Related Processes[J]. Molecules, 2023, 28(16): 5941.
[23] ESIN A S, CHERNYSHEVA A I, YURASOVA E A, et al.Hydrosilylation Vs. Piers-Rubinsztajn: Synthetic Routes to Chemically Cross-Linked Hybrid Phosphazene-Siloxane 3D-Structures[J]. Polymers, 2025, 17(14): 1967.
[24] ZHANG C Y, QU L J, WANG Y N, et al.Thermal Insulation and Stability of Polysiloxane Foams Containing Hydroxyl-Terminated Polydimethylsiloxanes[J]. RSC Advances, 2018, 8(18): 9901-9909.
[25] 汪曼秋. 有机硅多孔复合隔热材料的构筑与性能研究[D]. 杭州: 浙江大学, 2023.
WANG M Q.Fabrication and Properties of Silicone Porous Composite Thermal Insulation Materials[D]. Hangzhou: Zhejiang University, 2023.
[26] GUO J H, WANG J K, WANG W Q, et al.The Fabrication of 3D Porous PDMS Sponge for Oil and Organic Solvent Asorption[J]. Environmental Progress & Sustainable Energy,2019, 38(s1):S86-S92.
[27] HOFMANN T, GIESEN R U, HEIM H P.High Consistency Silicone Rubber Foams[J]. Polymers, 2024, 16(9): 1181.
[28] ZHAO J, LUO G X, WU J, et al.Preparation of Microporous Silicone Rubber Membrane with Tunable Pore Size via Solvent Evaporation-Induced Phase Separation[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2040-2046.
[29] BEDARF P, DUTTO A, ZANINI M, et al.Foam 3D Printing for Construction: A Review of Applications, Materials, and Processes[J]. Automation in Construction, 2021, 130: 103861.
[30] YANG Z R, WEN J P, ZHANG G Q, et al.Mechanical Characteristics of Multi-Level 3D-Printed Silicone Foams[J]. Materials, 2024, 17(16): 4097.
[31] XU K, LI D Y, SHANG E W, et al.A Heating-Assisted Direct Ink Writing Method for Preparation of PDMS Cellular Structure with High Manufacturing Fidelity[J]. Polymers, 2022, 14(7): 1323.
[32] JI Z Y, XU B G, SU Z Y, et al.Advanced Vat Photopolymerization 3D Printing of Silicone Rubber with High Precision and Superior Stability[J]. International Journal of Extreme Manufacturing, 2025, 7(2): 025001.
[33] QUAN H Y, ZHANG T, XU H, et al.Photo-Curing 3D Printing Technique and Its Challenges[J]. Bioactive Materials, 2020, 5(1): 110-115.
[34] ZHAO Z H, JI J W, ZHANG Y, et al.Ultra-Elastic Conductive Silicone Rubber Composite Foams for Durable Piezoresistive Sensors via Direct Ink Writing Three-Dimensional Printing[J]. Chemical Engineering Journal, 2025, 504: 158733.
[35] KARAGIORGIS X, KHANDELWAL G, BENIWAL A, et al.Polydimethylsiloxane Foam-Based Fully 3D Printed Soft Pressure Sensors[J]. Advanced Intelligent Systems, 2024, 6(10): 2300367.
[36] HAN W, KONG L B, XU M.Advances in Selective Laser Sintering of Polymers[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 042002.
[37] SATHIES T, SENTHIL P, ANOOP M S.A Review on Advancements in Applications of Fused Deposition Modelling Process[J]. Rapid Prototyping Journal, 2020, 26(4): 669-687.
[38] TANG W Y, SHI S Z, WANG B, et al.Constructing Structure-Gradient Silicone Rubber/CNTS Foam with Desirable Resilience and Strength via Green Supercritical CO2 Foaming of Non-Equilibrium Gas Concentration Profiles[J]. Sustainable Materials and Technologies, 2024, 40: e00943.
[39] LI D L, DENG W X, JIN Z F, et al.Bioinspired Silicone Rubber Foams with Adjustable Gradient Structures Induced via Temperature Fields[J]. Journal of Applied Polymer Science, 2025, 142(16): e56765.
[40] ZHENG W, DENG W X, XIONG S F, et al.Synergistic Inherent and Dynamic Cross-Links for Self-Healable Polydimethylsiloxane Elastomer Foams[J]. ACS Applied Polymer Materials, 2025, 7(6): 3945-3953.
[41] WU Y Y, WU Z H, CHEN Z Y, et al.Large-Scale and Facile Fabrication of Phenyl-Containing Silicone Foam Materials with Lightweight, Wide-Temperature Flexibility and Tunable Pore Structure for Exceptional Thermal Insulation[J]. Chemical Engineering Journal, 2024, 492: 152183.
[42] SHI S Z, ZHANG Y, LUO Y, et al.Reinforcement of Mechanical Properties of Silicone Rubber Foam by Functionalized Graphene Using Supercritical CO2 Foaming Technology[J]. Industrial & Engineering Chemistry Research, 2020, 59(51): 22132-22143.
[43] BAI J W, LIAO X, HUANG E B, et al.Control of the Cell Structure of Microcellular Silicone Rubber/Nanographite Foam for Enhanced Mechanical Performance[J]. Materials & Design, 2017, 133: 288-298.
[44] YU Z, SONG Y F, YANG L J, et al.Lightweight and Flame Retardant Fluorosilicone Rubber Composited Foam Prepared by Supercritical Nitrogen[J]. Journal of Vinyl and Additive Technology, 2023, 29(5): 901-908.
[45] DU W N, ZHANG Z J, HUANG H, et al.Flame Retardancy and Mechanical Properties of Silicone Rubber Foam Composite Reinforced with ZnNiAl Layered Double Hydroxides[J]. Journal of Polymer Research, 2023, 30(10): 384.
[46] 李佳豪. 本征阻燃有机硅弹性泡沫的制备与性能研究[D]. 北京: 北京化工大学, 2024.
LI J H.Study on the Preparation and Properties of Intrinsic Flame-Retardant Silicone Elastic Foam[D]. Beijing: Beijing University of Chemical Technology, 2024.
[47] CHEN H Y, CHEN Z Y, MAO M, et al.Self-Adhesive Polydimethylsiloxane Foam Materials Decorated with MXene/Cellulose Nanofiber Interconnected Network for Versatile Functionalities[J]. Advanced Functional Materials, 2023, 33(48): 2304927.
[48] LIN T, SHANG K, LIN G D, et al.Ceramifiable Flame-Retardant Silicone Rubber Foam for Long-Term Fire Resistance and Thermal Insulating[J]. Chemical Engineering Journal, 2025, 519: 165733.
[49] SHEN F X, LI Y, CHEN Z Y, et al.Lightweight, Surface Hydrophobic and Flame-Retardant Polydimethylsiloxane Foam Composites Coated with Graphene Oxide via Interface Engineering[J]. Progress in Organic Coatings, 2024, 189: 108276.
[50] CAO C F, WANG P H, ZHANG J W, et al.One-Step and Green Synthesis of Lightweight, Mechanically Flexible and Flame-Retardant Polydimethylsiloxane Foam Nanocomposites via Surface-Assembling Ultralow Content of Graphene Derivative[J]. Chemical Engineering Journal, 2020, 393: 124724.
[51] KUMAR A, ALI MOLLAH A, KESHRI A K, et al.Development of Macroporous Silicone Rubber for Acoustic Applications[J]. Industrial & Engineering Chemistry Research, 2016, 55(32): 8751-8760.
[52] ZHANG G D, WU Z H, XIA Q Q, et al.Ultrafast Flame-Induced Pyrolysis of Poly(Dimethylsiloxane) Foam Materials Toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 23161-23172.

基金

上海市市级科技重大专项

PDF(7570 KB)

Accesses

Citation

Detail

段落导航
相关文章

/