挥发性脂肪酸驯化盐单胞菌Halomonas venusta生物合成可降解包装材料PHA的研究

郑滢颍, 马晓军, 李家宁, 尹芬, 李冬娜

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 31-40.

PDF(1216 KB)
PDF(1216 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (21) : 31-40. DOI: 10.19554/j.cnki.1001-3563.2025.21.004
先进材料

挥发性脂肪酸驯化盐单胞菌Halomonas venusta生物合成可降解包装材料PHA的研究

  • 郑滢颍1, 马晓军1*, 李家宁2, 尹芬3, 李冬娜1
作者信息 +

Biosynthesis of Biodegradable PHA Packaging Materials from Volatile Fatty Acids by Halomonas Venusta

  • ZHENG Yingying1, MA Xiaojun1*, LI Jianing2, YIN Fen3, LI Dongna1
Author information +
文章历史 +

摘要

目的 针对嗜盐菌对挥发性脂肪酸(Volatile fatty acid,VFAs)的耐受能力有限(通常<5 g/L),限制了聚羟基脂肪酸酯(Polyhydroxyalkanoate,PHA)积累效率,开发一种具有高VFAs耐受的菌株,并深入解析嗜盐菌对VFAs的代谢特性,以提升PHA的生产效率。方法 首先,通过设置不同VFAs浓度梯度,探讨该菌株对不同VFAs的耐受度;其次,通过比较不同VFAs作为碳源时的PHA产量、PHA得率以及PHA生产效率,明确了该菌株的最适碳源种类;最后,通过分析发酵周期中碳源利用率、消耗速率等参数,揭示该菌株对VFAs依赖性的代谢规律。结果 Halomonas venusta对VFAs的耐受性依次为丁酸(50 g/L)>乙酸/戊酸(15 g/L)>丙酸。30 g/L丁酸为最佳PHB合成碳源(PHB产量为1.81 g/L,PHB质量分数为为73.98%),15 g/L戊酸最适于PHBV的合成(PHBV产量为1.01 g/L,PHBV质量分数为59.41%)。代谢分析显示双峰消耗特征,且Yx/sYp/s与碳源浓度呈负相关。结论 较于其他嗜盐菌株,Halomonas venusta对VFAs整体表现出更优异的耐受能力,有效提高了PHA生产效率。该研究为优化PHA生产工艺提供了理论依据和数据支撑。

Abstract

The work aims to develop a Halomonas venusta strain with exceptional VFAs tolerance and systematically elucidate its VFAs metabolic mechanisms, to address the critical issue of limited volatile fatty acid (VFAs) tolerance (typically<5 g/L) in halophilic bacteria that restricts polyhydroxyalkanoate (PHA) accumulation efficiency, so as to improve the production efficiency of PHAs. First, by establishing concentration gradients of different VFAs, the tolerance of the strain to various VFAs was examined. Second, by comparing PHA production, PHA yield, and PHA productivity when different VFAs were used as carbon sources, the optimal carbon source type for the strain was identified. Finally, by analyzing parameters such as carbon source utilization rate and consumption rate during the fermentation cycle, the metabolic patterns of the strain's dependence on VFAs were revealed. Results demonstrated significant differential VFAs tolerance in Halomonas venusta: butyrate (50 g/L) > acetate/valerate (15 g/L) > propionate. Optimal production conditions yielded 1.81 g/L PHB (73.98 wt%) with 30 g/L butyrate and 1.01 g/L PHBV (59.41 wt%) with 15 g/L valerate. Metabolic analysis revealed characteristic biphasic consumption patterns and significant negative correlations between both biomass yield (Yx/s) and product yield (Yp/s) with carbon source concentration. In conclusion, compared with other halophilic strains, Halomonas venusta exhibits overall superior tolerance to VFAs, effectively improving PHA production efficiency. This study provides a theoretical basis and data support for optimizing the PHA production process.

关键词

聚羟基脂肪酸酯 / Halomonas venusta / 生产效率 / 挥发性脂肪酸

Key words

polyhydroxyalkanoates / Halomonas venusta / production efficiency / volatile fatty acids

引用本文

导出引用
郑滢颍, 马晓军, 李家宁, 尹芬, 李冬娜. 挥发性脂肪酸驯化盐单胞菌Halomonas venusta生物合成可降解包装材料PHA的研究[J]. 包装工程. 2025, 46(21): 31-40 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.004
ZHENG Yingying, MA Xiaojun, LI Jianing, YIN Fen, LI Dongna. Biosynthesis of Biodegradable PHA Packaging Materials from Volatile Fatty Acids by Halomonas Venusta[J]. Packaging Engineering. 2025, 46(21): 31-40 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.004
中图分类号: TQ323.41   

参考文献

[1] LI D N, MA X J, LI J N, et al.Insights into Enhanced Polyhydroxyalkanoate Production by the Synergistic Use of Waste Wood Hydrolysate and Volatile Fatty Acids by Mixed Microbial Cultures[J]. Bioresource Technology, 2021, 337: 125488.
[2] 李冬娜, 马晓军. 聚羟基烷酸酯降解包装材料的生物合成及进展[J]. 包装工程, 2020, 41(5): 128-136.
LI D N, MA X J.Biosynthesis and Progress of Polyhydroxyalkanoates Degradable Packaging Materials[J]. Packaging Engineering, 2020, 41(5): 128-136.
[3] TAN D, XUE Y S, AIBAIDULA G, et al.Unsterile and Continuous Production of Polyhydroxybutyrate by Halomonas TD01[J]. Bioresource Technology, 2011, 102(17): 8130-8136.
[4] CHEN G Q, JIANG X R.Next Generation Industrial Biotechnology Based on Extremophilic Bacteria[J]. Current Opinion in Biotechnology, 2018, 50: 94-100.
[5] OBULISAMY P K, MEHARIYA S.Polyhydroxyalkanoates from Extremophiles: A Review[J]. Bioresource Technology, 2021, 325: 124653.
[6] SZACHERSKA K, OLESKOWICZ-POPIEL P, CIESIELSKI S, et al.Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production[J]. Polymers, 2021, 13(3): 321.
[7] TAO G B, TIAN L Y, PU N, et al.Efficient Production of Poly-3-Hydroxybutyrate from Acetate and Butyrate by Halophilic Bacteria Salinivibrio SPP. TGB4 and TGB19[J]. International Journal of Biological Macromolecules, 2022, 221: 1365-1372.
[8] HYUN Y, S S, SOO K. Production of Polyhydroxyalkanoates by Ralstonia Eutropha from Volatile Fatty Acids[J]. Korean Journal of Chemical Engineering, 2013, 30(12): 2223-2227.
[9] TAJIMA K, IGARI T, NISHIMURA D, et al.Isolation and Characterization ofBacillus Sp. INT005 Accumulating Polyhydroxyalkanoate (PHA) from Gas Field Soil[J]. Journal of Bioscience and Bioengineering, 2003, 95(1): 77-81.
[10] HADRI S H, TAREEN N, HASSAN A, et al.Alternatives to Conventional Plastics: Polyhydroxyalkanoates (PHA) from Microbial Sources and Recent Approaches - a Review[J]. Process Safety and Environmental Protection, 2025, 195: 106809.
[11] GAO Z L, CUI Y W, SUI Y, et al.Unveiling the Mechanism of Static Magnetic Field Effects on Carbon Flux into Polyhydroxyalkanoate Synthesis by Haloferax mediterranei[J]. Chemical Engineering Journal, 2023, 476: 146647.
[12] ZHANG M M, ZHAO X Q, CHENG C, et al.Improved Growth and Ethanol Fermentation of Saccharomyces Cerevisiae in the Presence of Acetic Acid by Overexpression of SET5 and PPR1[J]. Biotechnology Journal, 2015, 10(12): 1903-1911.
[13] YIN J, YANG J C, YU X Q, et al.Enhanced Poly(3-Hydroxybutyrateco-3-Hydroxyvalerate) Production from High-Concentration Propionate by a Novel Halophile Halomonas Sp. YJ01: Detoxification of the 2-Methylcitrate Cycle[J]. Bioresource Technology, 2023, 388: 129738.
[14] ROCCO C J, ESCALANTE-SEMERENA J C. In Salmonella Enterica, 2-Methylcitrate Blocks Gluconeogenesis[J]. Journal of Bacteriology, 2010, 192(3): 771-778.
[15] WANG P, CHEN X T, QIU Y Q, et al.Production of Polyhydroxyalkanoates by Halotolerant Bacteria with Volatile Fatty Acids from Food Waste as Carbon Source[J]. Biotechnology and Applied Biochemistry, 2020, 67(3): 307-316.
[16] WANG X F, OEHMEN A, FREITAS E B, et al.The Link of Feast-Phase Dissolved Oxygen (DO) with Substrate Competition and Microbial Selection in PHA Production[J]. Water Research, 2017, 112: 269-278.
[17] MARANG L, JIANG Y, VAN LOOSDRECHT M C M, et al. Butyrate as Preferred Substrate for Polyhydroxybutyrate Production[J]. Bioresource Technology, 2013, 142: 232-239.
[18] GĘSICKA A, GUTOWSKA N, PALANIAPPAN S, et al. Sequential Feast-Famine Process for Polyhydroxyalkanoates Production by Mixed Methanotrophic Culture under Different Carbon Supply and pH Control Strategies[J]. Journal of Environmental Chemical Engineering, 2025, 13(1): 115221.
[19] ZHAO L Z, PAN J C, JIANG Z J, et al.Biorefinery of Volatile Fatty Acids for the Synthesis of Poly(3-Hydroxybutyrate-co- 3-Hydroxyvalerate) Using Paracoccus Sp. TOH: Fermentation Performance and Metabolic Pathway[J]. Journal of Cleaner Production, 2024, 441: 140801.
[20] PU N, HU P, SHI L L, et al.Microbial Production of Poly(3-Hydroxybutyrate) from Volatile Fatty Acids Using the Marine Bacterium Neptunomonas Concharum[J]. Bioresource Technology Reports, 2020, 11: 100439.
[21] STANLEY A, PUNIL KUMAR H N, MUTTURI S, et al. Fed-Batch Strategies for Production of PHA Using a Native Isolate of Halomonas Venusta KT832796 Strain[J]. Applied Biochemistry and Biotechnology, 2018, 184(3): 935-952.
[22] BRAVO-PORRAS G, FERNÁNDEZ-GÜELFO L A, ÁLVAREZ-GALLEGO C J, et al. Influence of the Total Concentration and the Profile of Volatile Fatty Acids on Polyhydroxyalkanoates (PHA) Production by Mixed Microbial Cultures[J]. Biomass Conversion and Biorefinery, 2024, 14(1): 239-253.

基金

海南省重点研发项目(ZDYF2025SHFZ056);天津市自然科学基金重点项目(23JCZDJC00620);青海理工大学“昆仑英才”人才引进科研项目资助(2023-QLGKLYCZX-020)

PDF(1216 KB)

Accesses

Citation

Detail

段落导航
相关文章

/