灰板和微瓦楞月饼包装盒的环境影响比较研究

蔡微, 叶华雄, 林勤保, 杨青华, 陈可晴, 冯炜婷, 林光

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 320-329.

PDF(6758 KB)
PDF(6758 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 320-329. DOI: 10.19554/j.cnki.1001-3563.2025.19.034
绿色包装与循环经济

灰板和微瓦楞月饼包装盒的环境影响比较研究

  • 蔡微1, 叶华雄2,3, 林勤保2*, 杨青华4, 陈可晴1, 冯炜婷1, 林光5
作者信息 +

Comparative Study on Environmental Impacts of Greyboard and Micro-corrugated Mooncake Packaging Boxes

  • CAI Wei1, YE Huaxiong2,3, LIN Qinbao2*, YANG Qinghua4, CHEN Keqing1, FENG Weiting1, LIN Guang5
Author information +
文章历史 +

摘要

目的 通过量化灰板和微瓦楞月饼包装盒产品生命周期环境影响,识别出2类产品在生产过程中的最相关产品生命周期阶段和因素,为包装方案选型提供科学依据。方法 通过产品环境足迹(PEF)方法对比分析灰板与微瓦楞月饼包装盒的环境影响,以3 500个月饼包装盒(所有盒子展开面积之和为1 000 m2)为功能单位,采用SimaPro 10.2软件和Ecoinvent 3.11数据库建模,并运用环境足迹EF3.1方法量化16类环境影响。结果 气候变化是2类包装盒生产过程中最主要的环境影响类别,其中灰板盒和微瓦楞盒的碳足迹分别为2 156.03、1 464.81 kg CO2 eq./1 000 m2,两者环境影响均与其原材料生产中的蒸汽、电力消耗密切相关。敏感性分析结果表明,若采用清洁能源替代传统能源,2类包装盒的碳足迹最多可分别降低11.17%、14.31%。结论 在相同功能单位下,微瓦楞盒生产过程中的环境性能优于灰板盒。此外,清洁能源的推广应用能够显著降低产品包装的环境影响,推动绿色转型。

Abstract

The study aims to quantitatively assess the environmental impacts throughout the life cycle of greyboard and micro-corrugated mooncake packaging boxes to identify the most critical life cycle stages and factors in their production processes, thereby providing scientific evidence for packaging solution selection. The Product Environmental Footprint (PEF) methodology was used to compare the environmental performance of both packaging types with 3 500 mooncake packaging boxes (having a total unfolded area of 1 000 m²) as the functional unit. The modeling was conducted using SimaPro 10.2 software and Ecoinvent 3.11 database, with environmental impacts quantified across 16 categories according to the EF 3.1 method. Results demonstrated that climate change potential (carbon footprint) represented the most significant environmental impact category for both packaging types during production, with greyboard boxes generating 2 156.03 kg CO2 eq./1 000 m² and micro-corrugated boxes producing 1 464.81 kg CO2 eq./1 000 m². The environmental impacts of both packaging solutions were predominantly associated with steam and electricity consumption during raw material production. The sensitivity study revealed that adopting clean energy alternatives could reduce the carbon footprint by up to 11.17% for greyboard and 14.31% for micro-corrugated boxes, respectively. Comparative analysis under equivalent functional units shows superior environmental performance of micro-corrugated boxes over greyboard alternatives. Furthermore, the widespread adoption of clean energy demonstrates significant potential for reducing the packaging industry's environmental effect and facilitating green transformation.

关键词

产品环境足迹(PEF) / 灰板 / 微瓦楞 / 月饼包装盒 / 碳足迹 / 环境影响

Key words

product environmental footprint (PEF) / greyboard / micro-corrugated / mooncake packaging box / carbon footprint / environmental impact

引用本文

导出引用
蔡微, 叶华雄, 林勤保, 杨青华, 陈可晴, 冯炜婷, 林光. 灰板和微瓦楞月饼包装盒的环境影响比较研究[J]. 包装工程(技术栏目). 2025, 46(19): 320-329 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.034
CAI Wei, YE Huaxiong, LIN Qinbao, YANG Qinghua, CHEN Keqing, FENG Weiting, LIN Guang. Comparative Study on Environmental Impacts of Greyboard and Micro-corrugated Mooncake Packaging Boxes[J]. Packaging Engineering. 2025, 46(19): 320-329 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.034
中图分类号: TB484.1   

参考文献

[1] 曹新玲, 唐嘉彤, 郭林枫, 等. 浅析国家标准GB 23350-2021《限制商品过度包装要求食品和化妆品》第2号修改单[J]. 轻工标准与质量, 2024(5): 35-36.
CAO X L, TANG J T, GUO L F, et al.Brief Analysis of Revision No.2 of National Standard GB 23350-2021 “Food and Cosmetics for Restricting Overpackaging of Commodities”[J]. Standard & Quality of Light Industry, 2024(5): 35-36.
[2] ZIMMERMANN L, SCHERINGER M, GEUEKE B, et al.Implementing the EU Chemicals Strategy for Sustainability: The Case of Food Contact Chemicals of Concern[J]. Journal of Hazardous Materials, 2022, 437: 129167.
[3] LUCA Z, RANA P.Suggestions for Updating the Product Environmental Footprint (PEF) Method[R]. Strasbourg: Joint Research Centre, 2019.
[4] ISO. Environmental Management-Life Cycle Assessment- Principles and Framework: ISO 14040[S]. Geneva: International Organization for Standardization (ISO), 2006
[5] ISO. Environmental Management-Life Cycle Assessment-Requirements and Guidelines: ISO 14044[S]. Geneva: International Organization for Standardization (ISO), 2006.
[6] MANFREDI S, ALLACKER K, PELLETIER N, et al.Comparing the European Commission Product Environmental Footprint Method with Other Environmental Accounting Methods[J]. The International Journal of Life Cycle Assessment, 2015, 20(3): 389-404.
[7] CRENNA E, SECCHI M, BENINI L, et al.Global Environmental Impacts: Data Sources and Methodological Choices for Calculating Normalization Factors for LCA[J]. The International Journal of Life Cycle Assessment, 2019, 24(10): 1851-1877.
[8] SALA S, CERUTTI A, PANT R.Development of a Weighting Approach for the Environmental Footprint[R]. Brussels: Publications Office of the European Union, 2018.
[9] ROSENBAUM R K, BACHMANN T M, GOLD L S, et al.USEtox—The UNEP-SETAC Toxicity Model: Recommended Characterisation Factors for Human Toxicity and Freshwater Ecotoxicity in Life Cycle Impact Assessment[J]. The International Journal of Life Cycle Assessment, 2008, 13(7): 532-546.
[10] KLINGLMAIR M, SALA S, BRANDÃO M. Assessing Resource Depletion in LCA: A Review of Methods and Methodological Issues[J]. The International Journal of Life Cycle Assessment, 2014, 19(3): 580-592.
[11] VIGNALI G.Life-Cycle Assessment of Food-Packaging Systems[M]. Singapore: Springer, 2016: 1-22
[12] DIDONE M, SAXENA P, BRILHUIS-MEIJER E, et al.Moulded Pulp Manufacturing: Overview and Prospects for the Process Technology[J]. Packaging Technology and Science, 2017, 30(6): 231-249.
[13] 程雁飞, 张暖, 杨青华, 等. 基于欧盟产品环境足迹方法的纸浆模塑眼镜盒生命周期评价研究[J]. 包装工程, 2025, 46(3): 229-237.
CHENG Y F, ZHANG N, YANG Q H, et al.Life Cycle Assessment of Pulp Molding Eyeglass Cases Based on EU Product Environmental Footprint Method[J]. Packaging Engineering, 2025, 46(3): 229-237.
[14] VAN DER HARST E, POTTING J, KROEZE C. Multiple Data Sets and Modelling Choices in a Comparative LCA of Disposable Beverage Cups[J]. Science of the Total Environment, 2014, 494: 129-143.
[15] LE LEE K J, WONG S F. Comparative Environmental and Socioeconomic Assessment on Mixed Plastic Waste Management: A Singapore Case Study[J]. Science of the Total Environment, 2023, 893: 164884.
[16] 李甫印, 张暖, 杨青华, 等. 可循环直运快递纸箱的生命周期评价[J]. 包装学报, 2025, 17(2): 62-68.
LI F Y, ZHANG N, YANG Q H, et al.Life Cycle Assessment of Recyclable Direct-Shipped Courier Cartons[J]. Packaging Journal, 2025, 17(2): 62-68.
[17] 巩桂芬, 李想. 两款木包装箱的生命周期影响分析及对比[J]. 包装工程, 2021, 42(5): 134-141.
GONG G F, LI X.Impact Analysis and Comparison of Two Wooden Packaging Boxes during Life Cycle[J]. Packaging Engineering, 2021, 42(5): 134-141.
[18] 霍李江, 赵昱. 鸡蛋包装生产工艺的生命周期评价[J]. 包装学报, 2021, 13(3): 37-43.
HUO L J, ZHAO Y.Life Cycle Assessment of Egg Packaging Production Technology[J]. Packaging Journal, 2021, 13(3): 37-43.
[19] European Commission. International Reference Life Cycle Data System (ILCD) Handbook-General Guide for Life Cycle Assessment - Detailed Guidance[EB/OL]. (2010-03-12)[2025-08-23]. https://eplca.jrc.ec.europa.eu/ilcd.html.
[20] DINTCHEVA N T, INFURNA G, D'ANNA F. End-of-Life and Waste Management of Disposable Beverage Cups[J]. Science of the Total Environment, 2021, 763: 143044.
[21] Global Energy Interconnection Development and Cooperation Organization. Research On China's Energy and Power Development Planning in 2030 and Its Outlook to 2060[EB/OL]. (2021-03-19)[2025-8-23]. http://www.chinapower.com.cn/tynfd/zcdt/20210320/59388.html.

PDF(6758 KB)

Accesses

Citation

Detail

段落导航
相关文章

/