基于生命周期评估的生物基包装材料可持续性评价与应用优化研究

柳虎威, 周丽, 杨江龙, 梁凯博

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 291-297.

PDF(497 KB)
PDF(497 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 291-297. DOI: 10.19554/j.cnki.1001-3563.2025.19.031
绿色包装与循环经济

基于生命周期评估的生物基包装材料可持续性评价与应用优化研究

  • 柳虎威1, 周丽1, 杨江龙2, 梁凯博2
作者信息 +

Life Cycle Assessment-based Sustainability Evaluation and Application Optimization of Bio-based Packaging Materials

  • LIU Huwei1, ZHOU Li1, YANG Jianglong2, LIANG Kaibo2
Author information +
文章历史 +

摘要

目的 针对传统石油基包装材料环境负荷高、资源依赖性强的问题,构建生物基包装材料生命周期评估模型,评价其可持续性,并提出应用优化策略。方法 基于ISO 14040/14044,建立包含原料获取、生产制造、使用和废弃处理全过程的LCA评价框架,选取碳足迹、水足迹、土地利用等关键指标,对PLA、PHA、淀粉基和纤维素基等典型生物基包装材料进行定量评估,并与传统PE、PP材料进行对比分析。结果 PLA在全生命周期中的碳排放比PE降低了35%,在海洋环境中PHA在6~12个月内可完全降解,在堆肥条件下淀粉基材料在90 d内完全降解,但其力学性能较差。生产制造阶段是主要环境影响源,占总影响的60%~75%。结论 生物基包装材料在环境友好性方面具有显著优势,通过技术创新、产业协同和政策引导可实现大规模应用,可为包装产业绿色转型提供技术支撑。

Abstract

The work aims to establish a life cycle assessment model for bio-based packaging materials to evaluate their sustainability and propose application optimization strategies, so as to address the high environmental burden and strong resource dependence of traditional polyolefin-based packaging materials. Based on ISO 14040/14044 standards, a comprehensive LCA evaluation framework covering raw material acquisition, production, use, and end-of-life treatment was established. Key indicators including carbon footprint, water footprint, and land use were selected to quantitatively assess typical bio-based packaging materials such as PLA, PHA, starch-based, and cellulose-based materials, with comparative analysis against traditional PE and PP materials. PLA showed 35% reduction in carbon emissions compared with PE throughout its life cycle. PHA could completely degrade in a marine environment within 6-12 months. Starch-based materials could completely degrade within 90 days under composting conditions but had poor mechanical properties. The production stage was the major source of environmental impact, accounting for 60%-75% of total impact. In conclusion, bio-based packaging materials demonstrate significant advantages in environmental friendliness. Through technological innovation, industrial collaboration, and policy guidance, large-scale application can be achieved, providing support for the green transformation of the packaging industry.

关键词

生物基包装材料 / 生命周期评估 / 可持续性 / 碳足迹 / 循环经济

Key words

bio-based packaging materials / life cycle assessment / sustainability / carbon footprint / circular economy

引用本文

导出引用
柳虎威, 周丽, 杨江龙, 梁凯博. 基于生命周期评估的生物基包装材料可持续性评价与应用优化研究[J]. 包装工程(技术栏目). 2025, 46(19): 291-297 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.031
LIU Huwei, ZHOU Li, YANG Jianglong, LIANG Kaibo. Life Cycle Assessment-based Sustainability Evaluation and Application Optimization of Bio-based Packaging Materials[J]. Packaging Engineering. 2025, 46(19): 291-297 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.031
中图分类号: TB48   

参考文献

[1] JAMBECK J R, WALKER-FRANKLIN I.The Impacts of Plastics' Life Cycle[J]. One Earth, 2023, 6(6): 600-606.
[2] VIDAL F, VAN DER MAREL E R, KERR R W F, et al. Designing a Circular Carbon and Plastics Economy for a Sustainable Future[J]. Nature, 2024, 626(7997): 45-57.
[3] SWETHA T A, BORA A, MOHANRASU K, et al.A Comprehensive Review on Polylactic Acid (PLA) - Synthesis, Processing and Application in Food Packaging[J]. International Journal of Biological Macromolecules, 2023, 234: 123715.
[4] 孙文训, 钟文, 白永平, 等. 可降解阻隔包装的研究现状及发展趋势[J]. 包装工程, 2024, 45(17): 27-41.
SUN W X, ZHONG W, BAI Y P, et al.Research Status and Development Trend of Degradable Barrier Packaging[J]. Packaging Engineering, 2024, 45(17): 27-41.
[5] BRIASSOULIS D, PIKASI A, HISKAKIS M, et al.Life-Cycle Sustainability Assessment for the Production of Bio-Based Polymers and Their Post-Consumer Materials Recirculation through Industrial Symbiosis[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 41: 100818.
[6] DANGI M B, MALLA O B, COHEN R R H, et al. Life Cycle Assessment of Municipal Solid Waste Management in Kathmandu City, Nepal - an Impact of an Incomplete Data Set[J]. Habitat International, 2023, 139: 102895.
[7] TASCIONE V, SIMBOLI A, TADDEO R, et al.A Comparative Analysis of Recent Life Cycle Assessment Guidelines and Frameworks: Methodological Evidence from the Packaging Industry[J]. Environmental Impact Assessment Review, 2024, 108: 107590.
[8] 韩笑, 李荣国, 黄山, 等. 基于环境绩效的烟草商业物流可降解薄膜包装优化研究[J]. 包装工程, 2024, 45(3): 276-283.
HAN X, LI R G, HUANG S, et al.Optimization of Degradable Film Packaging for Tobacco Commercial Logistics Based on Environmental Performance[J]. Packaging Engineering, 2024, 45(3): 276-283.
[9] MOUSAVI-AVVAL S H, SAHOO K, NEPAL P, et al. Environmental Impacts and Techno-Economic Assessments of Biobased Products: A Review[J]. Renewable and Sustainable Energy Reviews, 2023, 180: 113302.
[10] HICKS A.Life Cycle Assessment and Engineered Nanomaterials: Looking to the Past to Inform the Future - Considering Nanoscale Silver as an Example[J]. NanoImpact, 2025, 39: 100569.
[11] HERGOUALC'H K, MUELLER N, BERNOUX M, et al. Improved Accuracy and Reduced Uncertainty in Greenhouse Gas Inventories by Refining the IPCC Emission Factor for Direct N2O Emissions from Nitrogen Inputs to Managed Soils[J]. Global Change Biology, 2021, 27(24): 6536-6550.
[12] ZHEN H Y, GOGLIO P, HASHEMI F, et al.Toward Better Biodiversity Impact Assessment of Agricultural Land Management through Life Cycle Assessment: A Systematic Review[J]. Environmental Science & Technology, 2025, 59(15): 7440-7451.
[13] TAHERIPOUR F, MUELLER S, KWON H.Response to "How Robust are Reductions in Modeled Estimates from GTAP-BIO of the Indirect Land Use Change Induced by Conventional Biofuels?"[J]. Journal of Cleaner Production, 2021, 310: 127431.
[14] GHORABE F D E, IREDDY A T S, ZUN P, et al. Quantitative Analysis of Nanomechanical Properties of Polyhydroxyalkanoate Polymer Films[J]. Progress in Organic Coatings, 2025, 201: 109092.
[15] 常伟伟, 荣卫锋, 彭辉. 碳材料在聚乳酸立构复合结晶中的应用研究进展[J]. 复合材料学报, 2025, 42(4): 1812-1823.
CHANG W W, RONG W F, PENG H.Research Progress of Carbon Material in the Stereocomplex Crystallization of Poly(lactic acid)[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 1812-1823.
[16] NAGARAJAN K J, RAMANUJAM N R, SANJAY M R, et al.A Comprehensive Review on Cellulose Nanocrystals and Cellulose Nanofibers: Pretreatment, Preparation, and Characterization[J]. Polymer Composites, 2021, 42(4): 1588-1630.
[17] KIM G B, CHOI S Y, CHO I J, et al.Metabolic Engineering for Sustainability and Health[J]. Trends in Biotechnology, 2023, 41(3): 425-451.
[18] MURRAY A, SKENE K, HAYNES K.The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context[J]. Journal of Business Ethics, 2017, 140(3): 369-380.
[19] 李梓昱, 杨倩倩, 蒋海云, 等. 碳中和目标背景下包装行业发展的对策[J]. 包装工程, 2023, 44(11): 175-187.
LI Z Y, YANG Q Q, JIANG H Y, et al.Countermeasures for Packaging Industry Development in the Context of Carbon Neutrality Target[J]. Packaging Engineering, 2023, 44(11): 175-187.
[20] OLCZYK M, KUC-CZARNECKA M.European Green Deal Index: A New Composite Tool for Monitoring European Union's Green Deal Strategy[J]. Journal of Cleaner Production, 2025, 495: 145077.

基金

2025年度山西省高质量发展研究课题(SXGZL2025084); 国家社会科学基金(21FGLB046,24FGLB047); 北京经济管理职业学院科技英才支持计划(25KJLH01)

PDF(497 KB)

Accesses

Citation

Detail

段落导航
相关文章

/