目的 通过将微图案进行与可见光波长相比拟的栅格化处理的办法,实现基于柱透镜阵列的动态图像彩色化效果。方法 针对上述问题,本研究首先利用CTP制版的方式,实现微图案阵列的设计输出,并与柱透镜阵列层相匹配,最终实现基本放大效果和动态放大效果;接下来通过将微图案进行与可见光波长相比拟的栅格化处理的办法,通过微纳结构与可见光相互作用而使微图案具有结构色效果,即实现不依赖于传统油墨呈色的特殊彩色效果,进而与柱透镜阵列匹配,形成动态彩色效果图案。结果 实验中分别设计了以文字“宽窄”以及字符“2024”为代表的结构参数,分别将字符组沿x轴及y轴方向进行压缩,使与其对应的y轴及x轴方向可以任意修改字符间距,从而实现完整的彩色放大图像。结论 本方法通过微纳结构与可见光相互作用而使微图案具有结构色效果,同时与透镜阵列匹配,形成动态彩色效果图案,可为绿色、环保及个性化产品的呈现提供一种光学调控、再现的方式,实现动态变化效果变色薄膜产品的应用。
Abstract
The work aims to achieve the color effect of dynamic images based on lenticular lens arrays by rasterizing micro-patterns with wavelengths comparable to visible light. First, a CTP plate was used to achieve the output of micro pattern arrays, which were then matched with the lenticular lens array layer, ultimately achieving basic amplification effect and dynamic amplification effect; Next, by periodic patterning the micro patterns with period comparable to visible light, the micro patterns could have a structural color effect through the interaction between nano structures and visible light, achieving a special color effect that did not rely on traditional ink coloring. Then, the micro pattern layers with characters "宽窄" and "2024" were matched with lenticular lens arrays to form the dynamic color effect pattern. The characters were compressed along the x-axis and y-axis directions, allowing for arbitrary modification of character spacing in the corresponding y-axis and x-axis directions, respectively, thus achieving a complete color magnified image. This method enhances the structural color effect of micro patterns through the interaction between nano structures and visible light, while matching with lens arrays to form dynamic color effect patterns. It can provide an optical control and reproduction method for the green printing, environmentally friendly, and personalized products, realizing the application of dynamic color changing thin film products.
关键词
柱透镜阵列 /
动态图像 /
莫尔放大 /
一维光栅
Key words
lenticular lens array /
dynamic graphic /
Moiré magnification /
one-dimensional gratin
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HUTLEY M C, HUNT R, STEVENS R F, et al.The Moire Magnifier[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 1994, 3(2): 133-142.
[2] HUANG P, HE C W, FAN B, et al.Dynamic Patterns Based on the Superposition of Micropattern Array and Microlens Array[J]. Optik, 2018, 174: 244-251.
[3] STEENBLIK R A, HURT M J, JORDAN G R. Micro-Optic Security and Image Presentation System: U.S. Patent 7333268[P].2008-02-19.
[4] HUANG P, HE C W, FAN B, et al.Superposition of Micropattern and Microlens Arrays for Improved Dynamic Moiré Pattern[J]. Physica Scripta, 2020, 95(5): 055002.
[5] GENG J.Three-Dimensional Display Technologies[J]. Advances in Optics and Photonics, 2013, 5(4): 456-535.
[6] BLANCHE P A.Holography, and the Future of 3D Display[J]. Light: Advanced Manufacturing, 2021, 2(4): 1.
[7] ZHENG W W, SHEN S, GAO Y L, et al.Design Methodology for Moiré Magnifier Based on Micro-Focusing Elements[J]. Optics Express, 2017, 25(25): 31746-31757.
[8] YU J, ZHENG W W, LIU N, et al.Dynamic Effect in the Moiré Magnifier by Using the Weak Domain Transformation[J]. Optics Express, 2020, 28(8): 11065-11073.
[9] WU F, ZHENG W W, YU J, et al.Realization of Moiré Imaging by Flat Micro Lens Array[C]// 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Micro- and Nano-Optics, Catenary Optics, and Subwavelength Electromagnetics. Chengdu, China. SPIE, 2019: 53-62.
[10] CHEN L Y, CHEN G X.Research on Improving Display Effect of Micro-Lens 3D Printing[C]// Advanced Graphic Communication, Printing and Packaging Technology. Singapore: Springer Singapore, 2020: 354-362.
[11] WANG T Y, ZHENG H, YOU C H, et al.A Texture-Hidden Anti-Counterfeiting QR Code and Authentication Method[J]. Sensors, 2023, 23(2): 795.
[12] KUMAR V, DOTTERMUSCH S, KATUMO N, et al.Unclonable Anti-Counterfeiting Labels Based on Microlens Arrays and Luminescent Microparticles[J]. Advanced Optical Materials, 2022, 10(9): 2102402.
[13] JIANG H, KAMINSKA B, PORRAS H, et al.Microlens Arrays above Interlaced Plasmonic Pixels for Optical Security Devices with High-Resolution Multicolor Motion Effects[J]. Advanced Optical Materials, 2019, 7(12): 1900237.
[14] CHAN J Y E, RUAN Q, NG R J H, et al. Rotation-Selective Moiré Magnification of Structural Color Pattern Arrays[J]. ACS Nano, 2019, 13(12): 14138-14144.
[15] TAO Y C, CAI F X, SHEN S.Development of Moiré Imaging Film Based on Diffraction Grating[C]// First Optics Frontier Conference. Hangzhou, China. SPIE, 2021: 83.
[16] CADARSO V J, CHOSSON S, SIDLER K, et al.High-Resolution 1D Moirés as Counterfeit Security Features[J]. Light: Science & Applications, 2013, 2(7): e86.
[17] CHAN J Y E, RUAN Q F, JIANG M H, et al. High-Resolution Light Field Prints by Nanoscale 3D Printing[J]. Nature Communications, 2021, 12: 3728.
[18] YU J Y, et al.Investigations on Anti-Counterfeiting Label Based on Microlens Array[C]// AOPC 2022: Optical Sensing, Imaging, and Display Technology. Beijing, China. SPIE, 2023: 71.
[19] CHEN L Y, CHEN G X, LIAO L Y, et al.Naked-Eye 3D Display Based on Microlens Array Using Combined Micro-Nano Imprint and UV Offset Printing Methods[J]. Molecules, 2020, 25(9): 2012.
[20] ZHU X Y, XU Q, HU Y J, et al.Flexible Biconvex Microlens Array Fabrication Using Combined Inkjet-Printing and Imprint-Lithography Method[J]. Optics & Laser Technology, 2019, 115: 118-124.
[21] 桑新柱, 于迅博, 陈铎, 等. 三维光显示技术研究进展[J]. 激光与光电子学进展, 2017, 54(5): 78-89.
SANG X Z, YU X B, CHEN D, et al.Research Progress on Three-Dimensional Optical Display Technology[J]. Laser & Optoelectronics Progress, 2017, 54(5): 78-89.
[22] QIN X J, SANG X Z, LI H, et al.Binocular Holographic Display Based on the Holographic Optical Element[J]. Journal of the Optical Society of America A, 2022, 39(12): 2316-2324.
[23] KOWALCZUK J.Robust and Real-Time Stereo Matching on Parallel Graphics Hardware Using Gradient-Based Disparity Refinement[M]. Lincoln: The University of Nebraska-Lincoln, 2015.
[24] 马群刚, 夏军. 3D显示技术[M]. 北京: 电子工业出版社, 2020.
MA Q G, XIA J.3D Display Technology[M]. Beijing: Publishing House of Electronics Industry, 2020.
[25] PALMER E W, HUTLEY M C, FRANKS A, et al.Diffraction Gratings (Manufacture)[J]. Reports on Progress in Physics, 1975, 38(8): 975.