目的 研究市售聚丙烯(Polypropylene,PP)与聚苯乙烯(Polystyrene,PS)餐盒在与食品模拟物接触过程中的微塑料迁移特征,评估微塑料的释放风险及影响因素。方法 选取常见PP和PS餐盒各2款,在80 ℃条件下分别与典型食品模拟物(50%乙醇和4%乙酸)接触2 h,随后采用傅里叶变换红外光谱(Micro-Fourier transform infrared spectroscopy,Micro-FT-IR)表征迁移至模拟物中的微塑料种类与浓度,并结合扫描电子显微镜(Scanning electron microscope,SEM)分析样品表面形貌特征。结果 微塑料在所有样品中均有检出,种类包括PP、PS、聚乙烯(Polyethylene,PE)、聚甲基丙烯酸甲酯(Polymethyl Methacrylate,PMMA)、聚酰胺(Polyamide,PA)和酚醛树脂。与50%乙醇接触时,PP和PS餐盒释放的微塑料浓度分别为0.6×103~3.2×103 颗/L和1.3×103~1.8×103颗/L;与4%乙酸接触时,分别为0.2×103~0.8×103颗/L和0.4×103~0.7×103颗/L,表明含油脂食品模拟物可能促进微塑料释放。微塑料粒径分布在10~434 μm,其中超过95%的粒子粒径大于20 μm。SEM分析发现,外卖餐盒表面存在裂纹、凹陷等缺陷,可能是加速微塑料释放的关键因素。结论 PP和PS餐盒在高温条件下与食品模拟物接触均会释放多种类型的微塑料,其中50%乙醇模拟物对微塑料释放更为敏感,餐盒表面结构缺陷可能加剧其释放行为,提示外卖包装在使用安全方面仍需进一步规范与监管。
Abstract
The work aims to investigate microplastic (MP) migration from commercial polypropylene (PP) and polystyrene (PS) takeaway containers upon contact with food simulants, and to assess associated release risks and influencing factors. Two PP and two PS containers were exposed to typical food simulants (50% ethanol and 4% acetic acid) at 80 °C for 2 h. Types and concentrations of released MPs in simulants were characterized by micro-Fourier transform infrared spectroscopy (Micro-FT-IR) for polymer identification and quantification, while container surface morphology was analyzed by scanning electron microscopy (SEM). Results showed that MPs were detected in all samples, comprising PP, PS, polyethylene (PE), polymethyl methacrylate (PMMA), polyamide (PA), and phenolic resin. After exposure to 50% ethanol, MP concentrations reached 0.6×103-3.2×103 particles/L for PP containers and 1.3×103-1.8×103 particles/L for PS containers. Corresponding values for 4% acetic acid exposure were 0.2×103-0.8×103 particles/L (PP) and 0.4×103-0.7×103 particles/L (PS), indicating enhanced MP release by fatty food simulants. Particle sizes ranged from 10 to 434 μm, with >95% exceeding 20 μm. SEM revealed surface defects (e.g., cracks, pits) that potentially accelerated MP release. In conclusion, PP and PS containers release diverse MPs under high-temperature contact with food simulants. 50% ethanol promotes greater release, and surface defects are a key contributing factor. These findings underscore the need for enhanced safety standards and regulatory measures for takeaway packaging.
关键词
外卖餐盒 /
微塑料 /
傅里叶变换红外光谱 /
食品模拟物 /
聚丙烯 /
聚苯乙烯
Key words
takeaway food containers /
microplastics /
micro-Fourier transform infrared spectroscopy /
food simulants /
polypropylene /
polystyrene
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] THOMPSON R C, OLSEN Y, MITCHELL R P, et al.Lost at Sea: Where Is all the Plastic[J]. Science, 2004, 304(5672): 838.
[2] BORRELLE S B, RINGMA J, LAW K L, et al.Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution[J]. Science, 2020, 369(6510): 1515-1518.
[3] WRIGHT S L, KELLY F J.Plastic and Human Health: A Micro Issue[J]. Environmental Science & Technology, 2017, 51(12): 6634-6647.
[4] ROCHMAN C M, HOH E, KUROBE T, et al.Ingested Plastic Transfers Hazardous Chemicals to Fish and Induces Hepatic Stress[J]. Scientific Reports, 2013, 3: 3263.
[5] 胡佳玲, 张天龙, 陈杰, 等. 微塑料在食品中的来源及其检测技术研究进展[J]. 分析测试学报, 2021, 40(11): 1672-1680.
HU J L, ZHANG T L, CHEN J, et al.Research Progresses on Source of Microplastics in Food and Their Identification Technology[J]. Journal of Instrumental Analysis, 2021, 40(11): 1672-1680.
[6] 张程程, 仝大伟, 魏珍珍, 等. 食品接触材料塑料颗粒释放的温度与老化效应及表征研究[J]. 中国食品工业, 2024(20): 99-102.
ZHANG C C, TONG D W, WEI Z Z, et al.Study on Temperature and Aging Effect and Characterization of Plastic Particles Released from Food Contact Materials[J]. China Food Industry, 2024(20): 99-102.
[7] DU F N, CAI H W, ZHANG Q, et al.Microplastics in Take-out Food Containers[J]. Journal of Hazardous Materials, 2020, 399: 122969.
[8] LUO Y L, GIBSON C T, CHUAH C, et al.Raman Imaging for the Identification of Teflon Microplastics and Nanoplastics Released from Non-Stick Cookware[J]. Science of The Total Environment, 2022, 851: 158293.
[9] HU J L, DUAN Y P, ZHONG H N, et al.Analysis of Microplastics Released from Plastic Take-out Food Containers Based on Thermal Properties and Morphology Study[J]. Food Additives & Contaminants: Part A, 2023, 40(2): 305-318.
[10] JUNG M R, HORGEN F D, ORSKI S V, et al.Validation of ATR FT-IR to Identify Polymers of Plastic Marine Debris, Including those Ingested by Marine Organisms[J]. Marine Pollution Bulletin, 2018, 127: 704-716.
[11] CHÉRCOLES ASENSIO R, SAN ANDRÉS MOYA M, DE LA ROJA J M, et al. Analytical Characterization of Polymers Used in Conservation and Restoration by ATR-FTIR Spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2009, 395(7): 2081-2096.
[12] DENG J Y, IBRAHIM M S, TAN L Y, et al.Microplastics Released from Food Containers Can Suppress Lysosomal Activity in Mouse Macrophages[J]. Journal of Hazardous Materials, 2022, 435: 128980.
[13] ZHOU X J, WANG J, REN J F.Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis[J]. Molecules, 2022, 27(9): 2646.
[14] VED P R, JOSEPH A, GOEL S.Microplastics and Other Harmful Substances Released from Disposable Paper Cups into Hot Water[J]. Journal of Hazardous Materials, 2021, 404: 124118.
[15] LÖDER M G J, KUCZERA M, MINTENIG S, et al. Focal Plane Array Detector-Based Micro-Fourier- Transform Infrared Imaging for the Analysis of Microplastics in Environmental Samples[J]. Environmental Chemistry, 2015, 12(5): 563.
[16] HE Y J, QIN Y, ZHANG T L, et al.Migration of (Non-) Intentionally Added Substances and Microplastics from Microwavable Plastic Food Containers[J]. Journal of Hazardous Materials, 2021, 417: 126074.
[17] HEE Y Y, WESTON K, SURATMAN S.The Effect of Storage Conditions and Washing on Microplastic Release from Food and Drink Containers[J]. Food Packaging and Shelf Life, 2022, 32: 100826.
[18] HU J, XU X, SONG Y, et al.Microplastics in Widely Used Polypropylene-Made Food Containers[J]. Toxics, 2022, 10(12): 762.
[19] CAI L Q, WANG J D, PENG J P, et al.Characteristic of Microplastics in the Atmospheric Fallout from Dongguan City, China: Preliminary Research and First Evidence[J]. Environmental Science and Pollution Research, 2017, 24(32): 24928-24935.
[20] LIU C G, LI J, ZHANG Y L, et al.Widespread Distribution of PET and PC Microplastics in Dust in Urban China and Their Estimated Human Exposure[J]. Environment International, 2019, 128: 116-124.
[21] KLEIN M, FISCHER E K.Microplastic Abundance in Atmospheric Deposition within the Metropolitan Area of Hamburg, Germany[J]. Science of The Total Environment, 2019, 685: 96-103.
[22] MEINIG L, BOLDT R, SPOERER Y, et al.Correlation between Processing Parameters, Morphology, and Properties of Injection-Molded Polylactid Acid (PLA) Specimens at Different Length Scales[J]. Polymers, 2023, 15(3): 721.
基金
珠海市社会发展领域科技计划项目(2420004000056)