纳米功能材料在医药和医疗器械包装等医学领域应用中的研究进展

何磊, 王田, 赵嘉欣, 余泰, 吴聪, 李威

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 128-138.

PDF(1176 KB)
PDF(1176 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 128-138. DOI: 10.19554/j.cnki.1001-3563.2025.19.015
先进材料

纳米功能材料在医药和医疗器械包装等医学领域应用中的研究进展

  • 何磊1a,b, 王田2, 赵嘉欣1a,b,3, 余泰1c, 吴聪1a,b, 李威1a,b,2*
作者信息 +

Research Progress of Nano-functional Materials in Medicine and Medical Device Packaging and Other Medical Applications

  • HE Lei1a,b, WANG Tian2, ZHAO Jiaxin1a,b,3, YU Tai1c, WU Cong1a,b, LI Wei1a,b,2*
Author information +
文章历史 +

摘要

目的 从材料学视角出发,系统总结纳米功能材料在医学领域的应用研究进展,重点阐述其在药物递送系统、抗菌防护和医疗包装等方面的功能特性,并探讨纳米材料在临床转化过程中面临的机遇与挑战。方法 通过检索和分析国内外有关纳米医学材料的经典文献和最新研究报道,从材料结构设计、功能化修饰策略和应用效果评价等方面,系统归纳纳米功能材料在医学领域的研究进展。重点关注无机纳米材料、聚合物纳米材料、脂质纳米材料等在药物递送、抗菌防护以及医疗包装等方向的应用。结论 纳米功能材料通过其独特的物理化学性质,在医学领域展现出显著应用优势。在药物递送方面,可实现靶向递送、控制释放和多功能协同。在抗菌防护方面,具有多重抗菌机制和持久抗菌效果。在医疗包装应用上,可强化包装材料,赋予其新的功能。然而,纳米材料在临床转化过程中仍面临生物安全性评估、规模化生产等挑战。未来应着重于提高材料的功能特异性和生物安全性,并建立完善的评价体系,推进纳米医学材料的临床应用。

Abstract

From the perspective of materials science, the work aims to systematically review the research progress on the application of nano-functional materials in medicine, focusing on their functional properties in drug delivery, antibacterial defense, and medical packaging applications and also discuss the opportunities and challenges that nanomaterials encounter during clinical translation. By searching and analyzing both classic literature and the latest research reports in China and abroad, the advancements in nano-functional materials within the medical field were summarized from material structural design, functional modification strategies, and evaluation of application effects. The application of inorganic nanomaterials, polymeric nanomaterials, and lipid nanomaterials in drug delivery, antibacterial defense, and medical packaging was highlighted. Overall, nano-functional materials provide significant advantages in the field of medicine due to their unique physicochemical properties. In drug delivery, they enable targeted delivery, controlled release, and multifunctional synergy. In antibacterial defense, these materials demonstrate multiple mechanisms and provide long-lasting antibacterial effects. Additionally, in medical packaging applications, nano-functional materials can enhance the strength of the packaging material while imparting new functionalities. However, nanomaterials still face challenges such as biosafety assessment and large-scale production during clinical translation. In the future, the focus should be placed on enhancing the functional specificity and biosafety of these materials, as well as establishing a comprehensive evaluation system to facilitate the clinical application of nanomedical materials.

关键词

纳米功能材料 / 药物递送 / 抗菌防护 / 医疗包装 / 生物安全性 / 临床转化

Key words

nano-functional materials / drug delivery / antibacterial defense / medical packaging / biosafety / clinical translation

引用本文

导出引用
何磊, 王田, 赵嘉欣, 余泰, 吴聪, 李威. 纳米功能材料在医药和医疗器械包装等医学领域应用中的研究进展[J]. 包装工程(技术栏目). 2025, 46(19): 128-138 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.015
HE Lei, WANG Tian, ZHAO Jiaxin, YU Tai, WU Cong, LI Wei. Research Progress of Nano-functional Materials in Medicine and Medical Device Packaging and Other Medical Applications[J]. Packaging Engineering. 2025, 46(19): 128-138 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.015
中图分类号: TB484    TB34   

参考文献

[1] HALEEM A, JAVAID M, SINGH R P, et al.Applications of Nanotechnology in Medical Field: A Brief Review[J]. Global Health Journal, 2023, 7(2): 70-77.
[2] KURUL F, TURKMEN H, CETIN A E, et al.Nanomedicine: How Nanomaterials Are Transforming Drug Delivery, Bio-Imaging, and Diagnosis[J]. Next Nanotechnology, 2025, 7: 100129.
[3] JADHAV V, ROY A, KAUR K, et al.Recent Advances in Nanomaterial-Based Drug Delivery Systems[J]. Nano-Structures & Nano-Objects, 2024, 37: 101103.
[4] MAKABENTA J M V, NABAWY A, LI C H, et al. Nanomaterial-Based Therapeutics for Antibiotic-Resistant Bacterial Infections[J]. Nature Reviews Microbiology, 2020, 19(1): 23-36.
[5] SHI J J, KANTOFF P W, WOOSTER R, et al.Cancer Nanomedicine: Progress, Challenges and Opportunities[J]. Nature Reviews Cancer, 2016, 17(1): 20-37.
[6] UNNIKRISHNAN G, JOY A, MEGHA M, et al.Exploration of Inorganic Nanoparticles for Revolutionary Drug Delivery Applications: A Criticalreview[J]. Discover Nano, 2023, 18(1): 157.
[7] FAN J N, CHENG Y Q, SUN M T.Functionalized Gold Nanoparticles: Synthesis, Properties and Biomedical Applications[J]. The Chemical Record, 2020, 20(12): 1474-1504.
[8] ANJUM T, HUSSAIN N, HAFSA, et al. Magnetic Nanomaterials as Drug Delivery Vehicles and Therapeutic Constructs to Treat Cancer[J]. Journal of Drug Delivery Science and Technology, 2023, 80: 104103.
[9] LIU B Y, LIU W S, XU M, et al.Drug Delivery Systems Based on Mesoporous Silica Nanoparticles for the Management of Hepatic Diseases[J]. Acta Pharmaceutica Sinica B, 2025, 15(2): 809-833.
[10] SAFITRI N, RAUF N, TAHIR D.Enhancing Drug Loading and Release with Hydroxyapatite Nanoparticles for Efficient Drug Delivery: A Review Synthesis Methods, Surface Ion Effects, and Clinical Prospects[J]. Journal of Drug Delivery Science and Technology, 2023, 90: 105092.
[11] HE S Y, WU L, LI X, et al.Metal-Organic Frameworks for Advanced Drug Delivery[J]. Acta Pharmaceutica Sinica B, 2021, 11(8): 2362-2395.
[12] YAN J Q, LIU C, WU Q W, et al.Mineralization of PH-Sensitive Doxorubicin Prodrug in ZIF-8 to Enable Targeted Delivery to Solid Tumors[J]. Analytical Chemistry, 2020, 92(16): 11453-11461.
[13] AVRAMOVIĆ N, MANDIĆ B, SAVIĆ-RADOJEVIĆ A, et al.Polymeric Nanocarriers of Drug Delivery Systems in Cancer Therapy[J]. Pharmaceutics, 2020, 12(4): 298.
[14] GAUCHER G, DUFRESNE M H, SANT V P, et al.Block Copolymer Micelles: Preparation, Characterization and Application in Drug Delivery[J]. Journal of Controlled Release, 2005, 109(1/2/3): 169-188.
[15] CARRILLO-CASTILLO T D, CASTRO-CARMONA J S, LUNA-VELASCO A, et al. PH-Responsive Polymer Micelles for Methotrexate Delivery at Tumor Microenvironments[J]. e-Polymers, 2020, 20(1): 624-635.
[16] ANDERSON J M, SHIVE M S.Biodegradation and Biocompatibility of PLA and PLGA Microspheres[J]. Advanced Drug Delivery Reviews, 1997, 28(1): 5-24.
[17] ABEDI-GABALLU F, DEHGHAN G, GHAFFARI M, et al.PAMAM Dendrimers as Efficient Drug and Gene Delivery Nanosystems for Cancer Therapy[J]. Applied Materials Today, 2018, 12: 177-190.
[18] LARGE D E, ABDELMESSIH R G, FINK E A, et al.Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application[J]. Advanced Drug Delivery Reviews, 2021, 176: 113851.
[19] NSAIRAT H, KHATER D, SAYED U, et al.Liposomes: Structure, Composition, Types, and Clinical Applications[J]. Heliyon, 2022, 8(5): e09394.
[20] XU Y J, WANG C J, SHEN F R, et al.Lipid-Coated CaCO3 Nanoparticles as a Versatile PH-Responsive Drug Delivery Platform to Enable Combined Chemotherapy of Breast Cancer[J]. ACS Applied Bio Materials, 2022, 5(3): 1194-1201.
[21] SCHOENMAKER L, WITZIGMANN D, KULKARNI J A, et al.MRNA-Lipid Nanoparticle COVID-19 Vaccines: Structure and Stability[J]. International Journal of Pharmaceutics, 2021, 601: 120586.
[22] ADAMS D, GONZALEZ-DUARTE A, O'RIORDAN W D, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis[J]. New England Journal of Medicine, 2018, 379(1): 11-21.
[23] JOKERST J V, LOBOVKINA T, ZARE R N, et al.Nanoparticle PEGylation for Imaging and Therapy[J]. Nanomedicine, 2011, 6(4): 715-728.
[24] OWENS D E, PEPPAS N A. Opsonization, Biodistribution,Pharmacokinetics of Polymeric Nanoparticles[J]. International Journal of Pharmaceutics, 2006, 307(1): 93-102.
[25] GABIZON A, CATANE R, UZIELY B, et al.Prolonged Circulation Time and Enhanced Accumulation in Malignant Exudates of Doxorubicin Encapsulated in Polyethylene-Glycol Coated Liposomes[J]. Cancer Research, 1994, 54(4): 987-992.
[26] GEORGE M, ABRAHAM T E.Polyionic Hydrocolloids for the Intestinal Delivery of Protein Drugs: Alginate and Chitosan—A Review[J]. Journal of Controlled Release, 2006, 114(1): 1-14.
[27] TORCHILIN V P.Recent Advances with Liposomes as Pharmaceutical Carriers[J]. Nature Reviews Drug Discovery, 2005, 4(2): 145-160.
[28] MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al.Engineering Precision Nanoparticles for Drug Delivery[J]. Nature Reviews Drug Discovery, 2020, 20(2): 101-124.
[29] ROSENBLUM D, JOSHI N, TAO W, et al.Progress and Challenges towards Targeted Delivery of Cancer Therapeutics[J]. Nature Communications, 2018, 9: 1410.
[30] ZHOU J T, JIANG X Y, HE S Y, et al.Rational Design of Multitarget-Directed Ligands: Strategies and Emerging Paradigms[J]. Journal of Medicinal Chemistry, 2019, 62(20): 8881-8914.
[31] LI J Z, WEI Y H, ZHANG C L, et al.Cell- Membrane-Coated Nanoparticles for Targeted Drug Delivery to the Brain for the Treatment of Neurological Diseases[J]. Pharmaceutics, 2023, 15(2): 621.
[32] SUN H L, LI X Y, LIU Q, et al.PH-Responsive Self-Assembled Nanoparticles for Tumor-Targeted Drug Delivery[J]. Journal of Drug Targeting, 2024, 32(6): 672-706.
[33] GUO F Y, DU Y Z, WANG Y J, et al.Targeted Drug Delivery Systems for Matrix Metalloproteinase- Responsive Anoparticles in Tumor Cells: A Review[J]. International Journal of Biological Macromolecules, 2024, 257: 128658.
[34] XUE Q, YE C, ZHANG M M, et al.Glutathione Responsive Cubic Gel Particles Cyclodextrin Metal-Organic Frameworks for Intracellular Drug Delivery[J]. Journal of Colloid and Interface Science, 2019, 551: 39-46.
[35] RAFAEL D, MELENDRES M M R, ANDRADE F, et al. Thermo-Responsive Hydrogels for Cancer Local Therapy: Challenges and State-of-Art[J]. International Journal of Pharmaceutics, 2021, 606: 120954.
[36] CHENG Y, DOANE T L, CHUANG C H, et al.Near Infrared Light-Triggered Drug Generation and Release from Gold Nanoparticle Carriers for Photodynamic Therapy[J]. Small, 2014, 10(9): 1799-1804.
[37] GUO Y X, ZHANG Y, MA J Y, et al.Light/Magnetic Hyperthermia Triggered Drug Released from Multi-Functional Thermo-Sensitive Magnetoliposomes for Precise Cancer Synergetic Theranostics[J]. Journal of Controlled Release, 2018, 272: 145-158.
[38] SHAKYA G, CATTANEO M, GUERRIERO G, et al.Ultrasound-Responsive Microbubbles and Nanodroplets: A Pathway to Targeted Drug Delivery[J]. Advanced Drug Delivery Reviews, 2024, 206: 115178.
[39] LIU S B, ZENG T H, HOFMANN M, et al.Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress[J]. ACS Nano, 2011, 5(9): 6971-6980.
[40] TEIXEIRA-SANTOS R, GOMES M, GOMES L C, et al.Antimicrobial and Anti-Adhesive Properties of Carbon Nanotube-Based Surfaces for Medical Applications: A Systematic Review[J]. iScience, 2021, 24(1): 102001.
[41] LINKLATER D P, BAULIN V A, JUODKAZIS S, et al.Mechano-Bactericidal Actions of Nanostructured Surfaces[J]. Nature Reviews Microbiology, 2020, 19(1): 8-22.
[42] SLAVIN Y N, ASNIS J, HÄFELI U O, et al. Metal Nanoparticles: Understanding the Mechanisms Behind Antibacterial Activity[J]. Journal of Nanobiotechnology, 2017, 15(1): 65.
[43] BRUNA T, MALDONADO-BRAVO F, JARA P, et al.Silver Nanoparticles and Their Antibacterial Applications[J]. International Journal of Molecular Sciences, 2021, 22(13): 7202.
[44] CHATTERJEE A K, CHAKRABORTY R, BASU T.Mechanism of Antibacterial Activity of Copper Nanoparticles[J]. Nanotechnology, 2014, 25(13): 135101.
[45] ZHOU Z L, LI B, LIU X M, et al.Recent Progress in Photocatalytic Antibacterial[J]. ACS Applied Bio Materials, 2021, 4(5): 3909-3936.
[46] LIU S, SHI Z S, TENG L, et al.Biocompatible Black Phosphorus Nanosheets-Antimicrobial Peptide Nanocomposites for Enhanced Anti-Infection Therapy[J]. Molecules, 2025, 30(4): 872.
[47] MEI L Q, ZHU S, LIU Y P, et al.An Overview of the Use of Nanozymes in Antibacterial Applications[J]. Chemical Engineering Journal, 2021, 418: 129431.
[48] DING M Y, DU L Q, GUO A Y, et al.A Novel Fe3O4/CuOx Nanozyme: Intrinsic Peroxidase-Like Activity to Kill Bacteria and Sterilize Wounds[J]. Applied Surface Science, 2023, 625: 157185.
[49] CAI S F, JIA X H, HAN Q S, et al.Porous Pt/Ag Nanoparticles with Excellent Multifunctional Enzyme Mimic Activities and Antibacterial Effects[J]. Nano Research, 2017, 10(6): 2056-2069.
[50] SUN Y, XU B L, PAN X T, et al.Carbon-Based Nanozymes: Design, Catalytic Mechanism, and Bioapplication[J]. Coordination Chemistry Reviews, 2023, 475: 214896.
[51] HU X J, ZHANG H, WANG Y T, et al.Synergistic Antibacterial Strategy Based on Photodynamic Therapy: Progress and Perspectives[J]. Chemical Engineering Journal, 2022, 450: 138129.
[52] ZENG S, WANG Z K, CHEN C, et al.Construction of Rhodamine-Based AIE Photosensitizer Hydrogel with Clinical Potential for Selective Ablation of Drug-Resistant Gram-Positive Bacteria in Vivo[J]. Advanced Healthcare Materials, 2022, 11(17): 2200837.
[53] CHEN Y, GAO Y J, CHEN Y, et al.Nanomaterials- Based Photothermal Therapy and Its Potentials in Antibacterial Treatment[J]. Journal of Controlled Release, 2020, 328: 251-262.
[54] WANG S G, CHEN Y C, CHEN Y C.Antibacterial Gold Nanoparticle-Based Photothermal Killing of Vancomycin- Resistant Bacteria[J]. Nanomedicine, 2018, 13(12): 1405-1416.
[55] CHEN X G, ZHOU J H, QIAN Y, et al.Antibacterial Coatings on Orthopedic Implants[J]. Materials Today Bio, 2023, 19: 100586.
[56] ALIAS R, MAHMOODIAN R, GENASAN K, et al.Mechanical, Antibacterial, and Biocompatibility Mechanism of PVD Grown Silver-Tantalum-Oxide- Based Nanostructured Thin Film on Stainless Steel 316L for Surgical Applications[J]. Materials Science and Engineering: C, 2020, 107: 110304.
[57] TAHIR I, AMINA S J, AHMAD N M, et al.Antimicrobial Coating of Biologically Synthesized Silver Nanoparticles on Surgical Fabric and Surgical Blade to Prevent Nosocomial Infections[J]. Heliyon, 2024, 10(17): e35968.
[58] SHAHEEN T I, ABD EL ATY A A. In-Situ Green Myco-Synthesis of Silver Nanoparticles Onto Cotton Fabrics for Broad Spectrum Antimicrobial Activity[J]. International Journal of Biological Macromolecules, 2018, 118: 2121-2130.
[59] AIJAZ M O, ALNASER I A, FAROOQ I, et al.Developing Novel Multifunctional Protective Clothes for Disabled Individuals Using Bio-Based Electrospun Nanofibrous Membranes[J]. International Journal of Biological Macromolecules, 2024, 275: 133598.
[60] DONG R N, GUO B L.Smart Wound Dressings for Wound Healing[J]. Nano Today, 2021, 41: 101290.
[61] VILLANUEVA M E, CUESTAS M L, PÉREZ C J, et al. Smart Release of Antimicrobial ZnO Nanoplates from a PH-Responsive Keratin Hydrogel[J]. Journal of Colloid and Interface Science, 2019, 536: 372-380.
[62] ZHANG S F, GATSI B, YAO X, et al.Cellulose Nanofiber-Reinforced Antimicrobial and Antioxidant Multifunctional Hydrogel with Self-Healing, Adhesion for Enhanced Wound Healing[J]. Carbohydrate Polymers, 2025, 352: 123189.
[63] JILDEH N B, MATOUQ M.Nanotechnology in Packing Materials for Food and Drug Stuff Opportunities[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104338.
[64] ANJUM A, GARG R, KASHIF M, et al.Nano-Scale Innovations in Packaging: Properties, Types, and Applications of Nanomaterials for the Future[J]. Food Chemistry Advances, 2023, 3: 100560.
[65] PEDROSA DE OLIVEIRA D, COSTA J S R, OLIVEIRA-NASCIMENTO L. Sustainability of Blisters for Medicines in Tablet Form[J]. Sustainable Chemistry and Pharmacy, 2021, 21: 100423.
[66] SARFRAZ J, GULIN-SARFRAZ T, NILSEN-NYGAARD J, et al.Nanocomposites for Food Packaging Applications: An Overview[J]. Nanomaterials, 2021, 11(1): 10.
[67] SILVA M R F, ALVES M F R P, CUNHA J P G Q, et al. Nanostructured Transparent Solutions for UV-Shielding: Recent Developments and Future Challenges[J]. Materials Today Physics, 2023, 35: 101131.
[68] BIN RASHID A, HAQUE M, MOHAIMENUL ISLAM S M, et al. Nanotechnology-Enhanced Fiber-Reinforced Polymer Composites: Recent Advancements on Processing Techniques and Applications[J]. Heliyon, 2024, 10(2): e24692.
[69] WANG G H, HAO L L, ZHANG X D, et al.Flexible and Transparent Silver Nanowires/Biopolymer Film for High-Efficient Electromagnetic Interference Shielding[J]. Journal of Colloid and Interface Science, 2022, 607: 89-99.
[70] KIM H W, KIM B R, RHEE Y H.Imparting Durable Antimicrobial Properties to Cotton Fabrics Using Alginate-Quaternary Ammonium Complex Nanoparticles[J]. Carbohydrate Polymers, 2010, 79(4): 1057-1062.
[71] DONG X, WANG S, REN K Q.Application of Composite Antibacterial Nanoparticle Non-Woven Fabric in Sterilization of Hospital Infection[J]. Preventive Medicine, 2023, 173: 107597.
[72] MITRA D, KANG E-T, NEOH K G.Antimicrobial Copper-Based Materials and Coatings: Potential Multifaceted Biomedical Applications[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21159-21182.
[73] DE WINTER S, VANBRABANT P, TUONG VI N T, et al. Impact of Temperature Exposure on Stability of Drugs in a Real-World Out-of-Hospital Setting[J]. Annals of Emergency Medicine, 2013, 62(4): 380-387.e1.
[74] HAN K R, YANG H X, FAN D D, et al.Advances in Nanotechnology Research in Food Production, Nutrition, and Health[J]. Nutrients, 2025, 17(15): 2443.
[75] BUMBUDSANPHAROKE N, HARNKARNSUJARIT N, GILCHRIST J F, et al.The Rise of Nanotechnology in Pharmaceutical and Healthcare Packaging: Applications and Future Prospective[J]. Packaging Technology and Science, 2025, 38(1): 3-31.
[76] BUMBUDSANPHAROKE N, KWON S, LEE W, et al.Optical Response of Photonic Cellulose Nanocrystal Film for a Novel Humidity Indicator[J]. International Journal of Biological Macromolecules, 2019, 140: 91-97.
[77] NAVROTSKAYA A, ALEKSANDROVA D, CHEKINI M, et al.Nanostructured Temperature Indicator for Cold Chain Logistics[J]. ACS Nano, 2022, 16(6): 8641-8650.
[78] ZHANG B H, WANG Z, SONG R G, et al.Passive UHF RFID Tags Made with Graphene Assembly Film-Based Antennas[J]. Carbon, 2021, 178: 803-809.
[79] NEL A, XIA T, MÄDLER L, et al. Toxic Potential of Materials at the Nanolevel[J]. Science, 2006, 311(5761): 622-627.
[80] WALKEY C D, OLSEN J B, GUO H B, et al.Nanoparticle Size and Surface Chemistry Determine Serum Protein Adsorption and Macrophage Uptake[J]. Journal of the American Chemical Society, 2012, 134(4): 2139-2147.
[81] PATEL D M, PATEL N N, PATEL J K.Nanomedicine Scale-up Technologies: Feasibilities and Challenges[M]// Emerging Technologies for Nanoparticle Manufacturing. Cham: Springer International Publishing, 2021: 511-539.
[82] HALAMODA-KENZAOUI B, VANDEBRIEL R J, HOWARTH A, et al.Methodological Needs in the Quality and Safety Characterisation of Nanotechnology- Based Health Products: Priorities for Method Development and Standardisation[J]. Journal of Controlled Release, 2021, 336: 192-206.
[83] PEER D, KARP J M, HONG S, et al.Nanocarriers as an Emerging Platform for Cancer Therapy[J]. Nature Nanotechnology, 2007, 2(12): 751-760.
[84] HU C J, ZHANG L, ARYAL S, et al.Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 10980-10985.
[85] LI W, DING Q H, LI M Q, et al.Stimuli-Responsive and Targeted Nanomaterials: Revolutionizing the Treatment of Bacterial Infections[J]. Journal of Controlled Release, 2025, 377: 495-523.
[86] KAMALY N, YAMEEN B, WU J, et al.Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release[J]. Chemical Reviews, 2016, 116(4): 2602-2663.

基金

上海市优秀学术带头人计划(22XD1404700); 上海市浦江人才计划(2021PJD080); 中国博士后科学基金(2021MD703948)

PDF(1176 KB)

Accesses

Citation

Detail

段落导航
相关文章

/