瓦楞纸板方管约束柱力学性能研究

齐宏伟, 杨颖, 秦杰, 庄宝潼

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 65-74.

PDF(4693 KB)
PDF(4693 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 65-74. DOI: 10.19554/j.cnki.1001-3563.2025.19.008
冲击防护超材料与超结构

瓦楞纸板方管约束柱力学性能研究

  • 齐宏伟1,2, 杨颖1,2, 秦杰1,2, 庄宝潼1,2
作者信息 +

Mechanical Properties of Corrugated Paperboard Square Tube-constrained Columns

  • QI Hongwei1,2, YANG Ying1,2, QIN Jie1,2, ZHUANG Baotong1,2
Author information +
文章历史 +

摘要

目的 研究瓦楞纸板方管约束柱在准静态轴向荷载作用下的破坏模式和变形特征,得出不同阶段受压承载力简化计算公式。方法 设计制作双层外横内竖瓦楞纸板方管柱和单层方管柱对比试件,开展准静态压缩试验,获得构件破坏全过程F-S曲线和关键力学参数;结合试验数据和简化力学模型推导双层方管柱受压承载力计算公式。结果 双层外横内竖瓦楞纸板方管柱在轴向荷载作用下的受压全过程分为线弹性阶段、平台阶段、压溃阶段、强化阶段4个阶段;竖向内管两端形成瓦楞纸板叠层压缩式压密区、中部形成薄壁管凹凸大变形折叠区;构件高度的增加对承载力影响较小,稳定变形区域延长,总吸能能力增大。双层方管柱平台阶段和压溃阶段受压承载力简化为外横管和内竖管承载力的叠加,计算公式主要参数为瓦楞纸板标准试件竖向横向平均压应力,单层竖管横管平台力的平均值和最小值,以及瓦楞纸管柱的受压截面面积。结论 双层外横内竖瓦楞纸板方管柱形成约束结构,在横向外管约束作用和稳定压缩变形引导下轴向压溃过程稳定,具有优越的塑性变形特征和较高吸能能力。

Abstract

The work aims to study the failure characteristics and deformation modes of corrugated paperboard square tube-constrained columns under quasi-static axial loads and obtain the simplified calculation formula of compressive bearing capacity at different stages. By designing and fabricating comparative samples of double-layer outer transverse and inner vertical corrugated paperboard square column and single-layer columns, and carrying out quasi-static compression tests, the F-S curves and key mechanical parameters of the entire process of component failure were obtained. By analyzing the test data and simplified mechanical models, the calculation formulas for the compressive bearing capacity of double-layer square columns were derived. The entire compression process under axial loads of double-layer outer transverse and inner vertical corrugated paperboard square column was divided into the linear elastic stage, the platform stage, the crushing stage and the strengthening stage. At both ends of the vertical inner tube, a corrugated paperboard laminated compression compaction area was formed, and in the middle, a large concave and convex deformation folding area of the thin-walled tube was formed. The increase of height had a slight effect on the bearing capacity, the stable deformation area was extended, and the total energy absorption capacity increased. The bearing capacity in the platform stage and the crushing stage was simplified to the superposition of the bearing capacity of the outer transverse tube and the inner vertical tube. The main parameters of the calculation formula included the average vertical and transverse compressive stresses of the standard specimens of corrugated paperboard, the average and minimum values of the platform forces of single-layer vertical and horizontal columns and the compression cross-sectional area of the corrugated paperboard column. The double-layer outer transverse and inner vertical corrugated paperboard square column forms a constrained structure. Under the constrained effect of the outer tube in the transverse direction and the guidance of stable compression deformation, the axial crushing process is stable, and it has superior plastic deformation characteristics and high energy absorption capacity.

关键词

瓦楞纸板 / 方管约束柱 / 准静态压缩 / 变形模式 / 受压承载力

Key words

corrugated paperboard / square tube-constrained column / quasi-static compression / deformation modes / compressive bearing capacity

引用本文

导出引用
齐宏伟, 杨颖, 秦杰, 庄宝潼. 瓦楞纸板方管约束柱力学性能研究[J]. 包装工程(技术栏目). 2025, 46(19): 65-74 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.008
QI Hongwei, YANG Ying, QIN Jie, ZHUANG Baotong. Mechanical Properties of Corrugated Paperboard Square Tube-constrained Columns[J]. Packaging Engineering. 2025, 46(19): 65-74 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.008
中图分类号: TB484.1    TU317   

参考文献

[1] 齐宏伟, 杨颖, 秦杰, 等. 瓦楞纸板方管柱力学性能与压溃模式研究[J]. 包装工程, 2024, 45(19): 325-333.
QI H W, YANG Y, QIN J, et al.Mechanical Properties and Crushing Mode of Corrugated Cardboard Square Tubular Columns[J]. Packaging Engineering, 2024, 45(19): 325-333.
[2] 宋卫生, 薛阳, 边文慧, 等. 瓦楞纸板楞形参数对力学性能的影响[J]. 包装工程, 2020, 41(17): 147-151.
SONG W S, XUE Y, BIAN W H, et al.Influence of Corrugated Parameters of Corrugated Board on Mechanical Properties[J]. Packaging Engineering, 2020, 41(17): 147-151.
[3] 郑银环, 李虎胜, 王思远, 等. 芯纸厚度对瓦楞纸板边压强度的影响及模拟[J]. 包装工程, 2023, 44(1): 286-292.
ZHENG Y H, LI H S, WANG S Y, et al.Effects and Simulation of Core Paper Thickness on Edge Crush Strength of Corrugated Board[J]. Packaging Engineering, 2023, 44(1): 286-292.
[4] 仲晨, 周丽娜, 刘莉, 等. 新型叠层结构瓦楞纸板设计及其动态性能研究[J]. 包装工程, 2023, 44(9): 206-212.
ZHONG C, ZHOU L N, LIU L, et al.Design and Dynamic Performance of New Corrugated Board with Laminated Structure[J]. Packaging Engineering, 2023, 44(9): 206-212.
[5] 梁友珍. 面粘合下UV形瓦楞纸板轴向压溃机制研究[D]. 无锡: 江南大学, 2022.
LIANG Y Z.Study on Crushing Mechanism of UV-Shaped Corrugated Paperboard with Surface Bonding under Axial Loading[D]. Wuxi: Jiangnan University, 2022.
[6] 梁友珍, 王军, 范慧丽. 多层UV形瓦楞纸板的准静态轴向压溃模型研究[J]. 包装工程, 2022, 43(19): 180-189.
LIANG Y Z, WANG J, FAN H L.Modeling for Multi-Layer UV-Shaped Corrugated Board under Quasi-Static Axial Crushing[J]. Packaging Engineering, 2022, 43(19): 180-189.
[7] CÁCERES-NARANJO D, BERNAD C, CALVO S, et al. Assessment and Modeling of Corrugated Board Dynamic Properties under Impact Loads. Application to Edge Crush Disposition[J]. Results in Engineering, 2023, 18: 101072.
[8] YU P E, YANG G, ZHU X M, et al.Experimental Study on the Flat-Wise Compression of Foldcore Sandwich Paperboard[J]. Thin-Walled Structures, 2022, 181: 110017.
[9] LIAN X G, PAN L, LU L X, et al.Investigation of Energy Absorption Characteristics of Square Paper Tubes Subjected to Axial Loading[J]. Thin-Walled Structures, 2020, 150: 106685.
[10] 潘丹. 纸瓦楞管的轴向动态缓冲吸能特性试验研究[D]. 西安: 西安理工大学, 2018.
PAN D.Cushioning Energy Absorption of Paper Corrugation Tubes Under Axial Dynamic Compression[D] Xi'an: Xi'an University of Technology, 2018.
[11] ALEXANDER J M.An Approximate Analysis of the Collapse of Thin Cylindrical Shells under Axial Loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10-15.
[12] HSU S S, JONES N.Quasi-Static and Dynamic Axial Crushing of Thin-Walled Circular Stainless Steel, Mild Steel and Aluminium Alloy Tubes[J]. International Journal of Crashworthiness, 2004, 9(2): 195-217.
[13] 常新哲, 徐绯, 杨磊峰, 等. 薄壁方管轴向压溃的相似性研究[J]. 振动与冲击, 2023, 42(11): 284-294.
CHANG X Z, XU F, YANG L F, et al.Study on the Similarity of Axial Crushing of Thin-Walled Square Tubes[J]. Journal of Vibration and Shock, 2023, 42(11): 284-294.
[14] 乔及森, 许雪梅, 苟宁年, 等. 薄壁方管吸能构件准静态条件下轴向压缩及三点弯曲大变形力学性能[J]. 塑性工程学报, 2013, 20(4): 6-10.
QIAO J S, XU X M, GOU N N, et al.Study on the Mechanical Behavior of Large Deformation for Thin-Walled Square Tube under the Quasi-Static Axial Crushing and Three-Point Bending[J]. Journal of Plasticity Engineering, 2013, 20(4): 6-10.
[15] 伊召锋, 于尧, 高广军, 等. 轴向冲击下薄壁方管屈曲模式及初始峰值力控制研究[J]. 铁道科学与工程学报, 2020, 17(7): 1841-1848.
YI Z F, YU Y, GAO G J, et al.On Buckling Mode and Initial Peak Force Control of Thin-Walled Square Tube under Axial Impact[J]. Journal of Railway Science and Engineering, 2020, 17(7): 1841-1848.
[16] QI C, YANG S, DONG F L.Crushing Analysis and Multiobjective Crashworthiness Optimization of Tapered Square Tubes under Oblique Impact Loading[J]. Thin-Walled Structures, 2012, 59: 103-119.
[17] VINAYAGAR K, SENTHIL KUMAR A.Crashworthiness Analysis of Double Section Bi-Tubular Thin-Walled Structures[J]. Thin-Walled Structures, 2017, 112: 184-193.
[18] YAO R Y, PANG T, ZHANG B, et al.On the Crashworthiness of Thin-Walled Multi-Cell Structures and Materials: State of the Art and Prospects[J]. Thin-Walled Structures, 2023, 189: 110734.
[19] BAI Z H, GUO H R, JIANG B H, et al.A Study on the Mean Crushing Strength of Hexagonal Multi-Cell Thin-Walled Structures[J]. Thin-Walled Structures, 2014, 80: 38-45.
[20] 李耀宙, 张冰冰, 薛仲卿, 等. 多胞薄壁铝合金方管载荷特性与多目标优化研究[J]. 包装工程, 2024, 45(7): 246-253.
LI Y Z, ZHANG B B, XUE Z Q, et al.Mechanical Performance and Multi-Objective Optimization of Multi-Cell Thin-Walled Aluminum Alloy Square Tubes[J]. Packaging Engineering, 2024, 45(7): 246-253.
[21] MAHMOODI A, SHOJAEEFARD M H, SAEIDI GOOGARCHIN H.Theoretical Development and Numerical Investigation on Energy Absorption Behavior of Tapered Multi-Cell Tubes[J]. Thin-Walled Structures, 2016, 102: 98-110.
[22] 王章骏, 许平, 邢杰, 等. 基于改进BESO算法的带隔板薄壁方管耐撞性拓扑优化[J]. 铁道科学与工程学报, 2021, 18(6): 1573-1581.
WANG Z J, XU P, XING J, et al.Crashworthiness Topology Optimization of the Thin-Walled Square Tube with Diaphragms Based on Improved BESO Algorithm[J]. Journal of Railway Science and Engineering, 2021, 18(6): 1573-1581.
[23] RZESZUT K, GARSTECKI A.Thin-Walled Structures with Slotted Connections Stability Problems[J]. Thin- Walled Structures, 2011, 49(5): 674-681.
[24] 门恒, 陈伟东, 田晓耕. 具有刚度梯度折纹管能量吸收[J]. 机械强度, 2021, 43(3): 651-659.
MEN H, CHEN W D, TIAN X G.Energy Absorption of pre-Folded Tube with Stiffness Gradient[J]. Journal of Mechanical Strength, 2021, 43(3): 651-659.
[25] 李志斌, 虞吉林, 郭刘伟. 具有诱导结构的铝合金薄壁方管轴向压缩吸能性能试验研究[J]. 工程力学, 2012, 29(6): 346-352.
LI Z B, YU J L, GUO L W.Experimental Investigations on the Energy Absorption Behavior of Aluminum Tubes with Inductive Structures Subjected to Axial Loading[J]. Engineering Mechanics, 2012, 29(6): 346-352.
[26] 李志超, 上官文斌, Subhash Rakheja, 等. 诱导结构对泡沫铝填充薄壁方管轴向压溃特性影响的研究[J]. 振动与冲击, 2020, 39(6): 167-175.
LI Z C, SHANGGUAN W B, RAKHEJA S, et al.Effect of Initiators on the Axial Crushing Characteristics of Foam-Filled Thin-Walled Square Columns[J]. Journal of Vibration and Shock, 2020, 39(6): 167-175.

基金

河北省高等学校科学技术研究项目(ZC2024180); 国家重点研发计划项目(2023YFC3011903)

PDF(4693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/