目的 对弹药无伞空投缓冲包装进行深入研究和探索,解决弹药有伞空投补给保障着陆散布大,直升机机降补给保障实施效率低、风险高等问题。方法 以某型弹药为研究对象,通过合理选择缓冲材料,并设计4层包装、2级缓冲的包装结构,减少弹药在无伞空投着陆后所受冲击力,实现了直升机在50 m高度悬停进行弹药无伞空投补给保障。结果 采用仿真软件及对比试验方式,对该缓冲包装状态下的弹药冲击特性及经过着陆冲击后弹药安全性进行建模仿真和分析,最后采用载重无人机进行实弹无伞空投验证。模拟仿真和空投试验结果均表明,利用该缓冲包装技术对某型弹药实施无伞空投是安全可行的。结论 创新设计了基于不同材料的多级缓冲包装结构,开创了弹药无伞空投补给的保障模式,为实现其他物资无伞空投提供了有益借鉴。
Abstract
The work aims to conduct in-depth research on cushioning packaging for parachute-free airdrop of ammunition, to resolve issues such as large landing dispersion in parachute-assisted airdrop resupply during military training, as well as low efficiency and high risks in helicopter-based logistics. Focusing on a specific type of ammunition, a four-layer packaging structure with two-stage buffering was designed through optimized material selection, which effectively reduced impact forces during parachute-free airdrop landings and enabled helicopters to execute ammunition resupply via parachute-free airdrops at a 50-meter hovering altitude. The simulations and comparative experiments were employed to model and analyze the impact characteristics and post-impact safety of the ammunition under this packaging design. Field validation was performed using cargo drones for live ammunition airdrops. Both simulation and experimental results confirmed the safety and feasibility of applying this cushioning technology to parachute-free airdrops of the tested ammunition. The innovative multi-material, multi-stage buffering structure establishes a pioneering logistics paradigm for parachute-free ammunition resupply, offering valuable insights for expanding parachute-free airdrop applications to other materials.
关键词
弹药 /
无伞空投 /
着陆冲击 /
缓冲包装
Key words
ammunition /
parachute-free airdrop /
landing impact /
cushioning packaging
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李文钊, 田春雷, 高敏, 等. 基于战时保障的弹药单元化包装研究[J]. 包装工程, 2007, 28(3): 108-109.
LI W Z, TIAN C L, GAO M, et al.Research of Ammunition Unit Package Based on Wartime Support[J]. Packaging Engineering, 2007, 28(3): 108-109.
[2] 朱红鹃. 海军弹药保障模式深化改革探讨[J]. 海军装备维修, 2019(5): 40-41.
ZHU H J.Discussion on the Deepening Reform of the Naval Ammunition Support Mode[J]. Naval Equipment Maintenance, 2019(5): 40-41.
[3] 彭国勋. 运输包装[M]. 北京: 印刷工业出版社, 1999.
PENG G X.Packing for Transport[M]. Beijing: Printing Industry Press, 1999.
[4] 张卫春, 吴犇, 鲍平鑫. 弹药运输包装试验存在问题及解决措施[J]. 国防交通工程与技术, 2011, 9(5): 61-64.
ZHANG W C, WU B, BAO P X.Research into Problems in the Transportability Testing of Ammunition and Our Solutions to Them[J]. Traffic Engineering and Technology for National Defence, 2011, 9(5): 61-64.
[5] 孙杰华, 蒋明明, 赵西友. 中件空投托盘缓冲包装设计[J]. 包装工程, 2022, 43(7): 154-159.
SUN J H, JIANG M M, ZHAO X Y.Design of Middle Airdrop Pallets Buffer Packaging[J]. Packaging Engineering, 2022, 43(7): 154-159.
[6] 董新东, 王宏, 林浩, 等. 中件空投平台缓冲材料及技术[J]. 包装工程, 2016, 37(17): 30-33.
DONG X D, WANG H, LIN H, et al.Cushioning Materials and Technology of Middle-Sized Pack Airdrop Platform[J]. Packaging Engineering, 2016, 37(17): 30-33.
[7] 蒋明明, 刘勤, 荣志强. 无伞空投保障刍议[J]. 空降兵, 2024(1): 34-36.
JIANG M M, LIU Q, RONG Z Q.Preliminary Discussion on the Guarantee of Parachute-less Airdrop[J]. Airborne Troops, 2024(1): 34-36.
[8] 路敦宝, 赵西友. 无伞空投大有可为[N]. 解放军报, 2020-12-01(A2).
LU D B, ZHAO X Y. Parachute-Less Airdrop Has Great Potential[N]. Liberation Army Daily, 2020-12-01(A2).
[9] 赵西友, 王宏, 许涛, 等. 无伞空投缓冲包装材料及技术研究[J]. 包装工程, 2016, 37(3): 54-57.
ZHAO X Y, WANG H, XU T, et al.Free Drop Buffering Packing Material and Technology[J]. Packaging Engineering, 2016, 37(3): 54-57.
[10] 王铁宁, 刘磊. 陆军装备物资无伞空投系统设计[J]. 装甲兵工程学院学报, 2019(2): 5-9.
WANG T N, LIU L.Design of the Army Equipments and Materials Airdrop without Parachute System[J]. Journal of Academy of Armored Force Engineering, 2019(2): 5-9.
[11] 彭彦平. 产品结构及其包装的优化设计方法[J]. 包装工程, 2003, 24(5): 4-5.
PENG Y P.The Optimal Design Method of Product Configuration and Its Package[J]. Packaging Engineering, 2003, 24(5): 4-5.
[12] 曾克俭, 刘珊. 蜂窝纸板动态缓冲性能分析研究[J]. 包装工程, 2014, 35(17): 15-18.
ZENG K J, LIU S.Analysis on Dynamic Cushioning Property of Honeycomb Paperboard[J]. Packaging Engineering, 2014, 35(17): 15-18.
[13] LU L X, SUN Y P, WANG Z W.Critical Buckling Load of Paper Honeycomb under Out-of-Plane Pressure[J]. Packaging Technology and Science, 2005, 18(3): 141-150.
[14] 刘志扬, 王来芬, 伊芳, 等. 弹药包装技术发展探讨[J]. 包装工程, 2002, 23(2): 34-35.
LIU Z Y, WANG L F, YI F, et al.Discuss on the Development of Technology of Packaging of Ammunition[J]. Packaging Engineering, 2002, 23(2): 34-35.
[15] 孙映斌, 汪送, 乔玲龙. 复合型非致命动能弹冲击能量耗散特性数值模拟[J]. 火力与指挥控制, 2024, 49(2): 26-32.
SUN Y B, WANG S, QIAO L L.Numerical Simulation of Energy Dissipation Characteristics of Compound Non-Lethal Kinetic Energy Projectile Impact[J]. Fire Control & Command Control, 2024, 49(2): 26-32.
[16] 陈扬. 空投弹药箱的设计及其着陆过程数值分析[J]. 四川兵工学报, 2015, 36(6): 45-47.
CHEN Y.Numerical Analysis of Design and Its Landing Airdrop Ammunition Box[J]. Journal of Sichuan Ordnance, 2015, 36(6): 45-47.
[17] 丁雁生, 陈力. 炸药装药撞击热点演化的条件和撞击起爆的随机性[C]// 2002全国爆炸与安全技术学术交流会论文集, 2002: 6-16.
DING Y S, CHEN L.The Conditions for the Evolution of Impact-Induced Hot Spots in Explosive Charges and the Stochastic Nature of Impact Initiation[C]// Proceedings of the 2002 National Conference on Explosion and Safety Technology, 2002: 6-16.