基于二维Voronoi模型的密度梯度泡沫铝冲击波传播特性研究

吴晨曦, 刘凯, 敬霖

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 31-40.

PDF(3548 KB)
PDF(3548 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 31-40. DOI: 10.19554/j.cnki.1001-3563.2025.19.004
冲击防护超材料与超结构

基于二维Voronoi模型的密度梯度泡沫铝冲击波传播特性研究

  • 吴晨曦, 刘凯, 敬霖*
作者信息 +

Shock Wave Propagation Characteristics in Density-gradient Aluminium Foams Based on 2D Voronoi Model

  • WU Chenxi, LIU Kai, JING Lin*
Author information +
文章历史 +

摘要

目的 研究恒速冲击下连续密度梯度泡沫铝的动态压溃力学行为与冲击波传播特性。方法 基于率无关的刚性-塑性硬化(R-PH)本构关系建立密度梯度泡沫铝的一维非线性冲击波模型,基于二维Voronoi方法建立密度梯度泡沫铝的动态压缩细观有限元模型,分析梯度泡沫铝典型的动态变形模式和应力-应变响应,揭示梯度泡沫铝的一维速度场分布规律和冲击波传播特性,比较理论与有限元计算得到的波阵面平均速度。结果 相较于均匀密度与正梯度泡沫铝的单一变形模式,负梯度泡沫铝的变形随着冲击速度增加由准静态模式转变为动态模式;均匀密度与正梯度泡沫铝的冲击波传播以单波为主,而负梯度泡沫铝冲击波的传播出现了由后波主导向前波主导转变的双波现象;双波传播过程中泡沫铝冲击端的部分动能转化为未变形区的动能,导致前波与后波波速降低。结论 验证了梯度泡沫铝冲击波理论分析模型的有效性,揭示了不同冲击速度下密度梯度对泡沫铝的动态压溃机理与冲击波传播特性的影响机制,为梯度泡沫材料在工程防护中的应用提供理论和技术支撑。

Abstract

The work aims to investigate the dynamic crushing behavior and shock wave propagation in continuously density-graded aluminium foams under constant-velocity impact. A one-dimensional nonlinear shock wave model was established based on a rate independent rigid-plastic hardening (R-PH) constitutive relation, and a microscale finite element model was developed by 2D Voronoi to simulate the dynamic crushing process, analyze the typical dynamic deformation mode and stress-strain response of gradient aluminum foams, reveal the one-dimensional velocity field distribution law and shock wave propagation characteristics of gradient aluminum foams, and compare the average velocity of the wavefront obtained by theoretical and finite element calculations. The results showed that compared with the single deformation mode of uniform density and positive gradient aluminium foams under impact, the negative gradient aluminium foams transitioned from quasi-static to dynamic deformation with increasing velocity. Shock wave propagation in uniform and positive gradient foams was dominated by a single wave, whereas negative gradient foams displayed double waves by a shift from backward wave to forward wave dominance. During wave propagation, part of the kinetic energy was transferred to the undeformed region, reducing the velocity of both forward and backward waves. The study validates the effectiveness of the theoretical shock model and elucidates the dynamic crushing mechanisms and wave propagation characteristics under different impact velocities and density distribution, providing theoretical and technical support for the application of graded aluminium foams in protective engineering.

关键词

泡沫铝 / 密度梯度 / 二维Voronoi模型 / 动态压缩 / 冲击波传播

Key words

aluminium foam / density gradient / 2D Voronoi model / dynamic compression / shock wave propagation

引用本文

导出引用
吴晨曦, 刘凯, 敬霖. 基于二维Voronoi模型的密度梯度泡沫铝冲击波传播特性研究[J]. 包装工程(技术栏目). 2025, 46(19): 31-40 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.004
WU Chenxi, LIU Kai, JING Lin. Shock Wave Propagation Characteristics in Density-gradient Aluminium Foams Based on 2D Voronoi Model[J]. Packaging Engineering. 2025, 46(19): 31-40 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.004
中图分类号: TB34    O341   

参考文献

[1] 敬霖, 王志华, 赵隆茂. 多孔金属及其夹芯结构力学性能的研究进展[J]. 力学与实践, 2015, 37(1): 1-24.
JING L, WANG Z H, ZHAO L M.Advances in Studies of the Mechanical Performance of Cellular Metals and Related Sandwich Structures[J]. Mechanics in Engineering, 2015, 37(1): 1-24.
[2] ASHBY M F, EVANS A, FLECK N A, et al.Aluminium Foams: a Design Guide[M]. UK: Heinemann Publishers, 2000: 64-78.
[3] GIBSON L J.Mechanical Behavior of Metallic Foams[J]. Annual Review of Materials Science, 2000, 30: 191-227.
[4] ZHENG Z J, WANG X K, YU J L.Mass Impact of Density-Graded Cellular Metals in a Temperature Field[J]. Applied Mechanics and Materials, 2014, 566: 599-604.
[5] LIU J G, HOU B, LU F Y, et al.A Theoretical Study of Shock Front Propagation in the Density Graded Cellular Rods[J]. International Journal of Impact Engineering, 2015, 80: 133-142.
[6] ZHOU X F, JING L.Deflection Analysis of Clamped Square Sandwich Panels with Layered-Gradient Foam Cores under Blast Loading[J]. Thin-Walled Structures, 2020, 157: 107141.
[7] ZHOU X F, JING L.Large Deflection Response of Sandwich Beams with Layered-Gradient Foam Cores Subjected to Low-Velocity Impact[J]. International Journal of Impact Engineering, 2023, 172: 104429.
[8] ZHANG Y R, ZHU Y D, CHANG B X, et al.Blast-Loading Simulators: Multiscale Design of Graded Cellular Projectiles Considering Projectile-Beam Coupling Effect[J]. Journal of the Mechanics and Physics of Solids, 2023, 180: 105402.
[9] AJDARI A, BABAEE S, VAZIRI A.Mechanical Properties and Energy Absorption of Heterogeneous and Functionally Graded Cellular Structures[J]. Procedia Engineering, 2011, 10: 219-223.
[10] ZHANG J J, WANG Z H, ZHAO L M.Dynamic Response of Functionally Graded Cellular Materials Based on the Voronoi Model[J]. Composites Part B: Engineering, 2016, 85: 176-187.
[11] ZHOU X F, JING L.Low-Velocity Impact Response of Sandwich Panels with Layered-Gradient Metal Foam Cores[J]. International Journal of Impact Engineering, 2024, 184: 104808.
[12] LI L, HAN B, HE S Y, et al.Shock Loading Simulation Using Density-Graded Metallic Foam Projectiles[J]. Materials & Design, 2019, 164: 107546.
[13] WANG X K, ZHENG Z J, YU J L.Crashworthiness Design of Density-Graded Cellular Metals[J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001.
[14] WANG S L, DING Y Y, WANG C F, et al.Dynamic Material Parameters of Closed-Cell Foams under High-Velocity Impact[J]. International Journal of Impact Engineering, 2017, 99: 111-121.
[15] REID S R, PENG C.Dynamic Uniaxial Crushing of Wood[J]. International Journal of Impact Engineering, 1997, 19(5/6): 531-570.
[16] ZHU H X, HOBDELL J R, WINDLE A H.Effects of Cell Irregularity on the Elastic Properties of 2D Voronoi Honeycombs[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 857-870.
[17] AJDARI A, CANAVAN P, NAYEB-HASHEMI H, et al.Mechanical Properties of Functionally Graded 2-D Cellular Structures: A Finite Element Simulation[J]. Materials Science and Engineering: A, 2009, 499(1/2): 434-439.
[18] ZHENG Z J, WANG C F, YU J L, et al.Dynamic Stress-Strain States for Metal Foams Using a 3D Cellular Model[J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93-114.
[19] 丁圆圆, 王士龙, 郑志军, 等. 多胞牺牲层的抗爆炸分析[J]. 力学学报, 2014, 46(6): 825-833.
DING Y Y, WANG S L, ZHENG Z J, et al.anti-Blast Analysis of Cellular Sacrificial Cladding[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 825-833.
[20] 范东宇, 苏彬豪, 彭辉, 等. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究[J]. 力学学报, 2022, 54(6): 1630-1640.
FAN D Y, SU B H, PENG H, et al.Research on Dynamic Crushing and Mechanism of Mitigation and Energy Absorption of Cellular Sacrificial Layers[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630-1640.
[21] 蔡正宇, 丁圆圆, 王士龙, 等. 梯度多胞牺牲层的抗爆炸分析[J]. 爆炸与冲击, 2017, 37(3): 396-404.
CAI Z Y, DING Y Y, WANG S L, et al.Anti-Blast Analysis of Graded Cellular Sacrificial Cladding[J]. Explosion and Shock Waves, 2017, 37(3): 396-404.
[22] 刘冕, 王根伟, 宋辉, 等. 负梯度泡沫金属中的局部密实化现象[J]. 高压物理学报, 2020, 34(4): 117-127.
LIU M, WANG G W, SONG H, et al.Phenomenon of Local Densification in Negative Graded Metal Foam[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 117-127.
[23] 王礼立, 胡时胜. 应力波基础[M]. 3版. 北京: 国防工业出版社, 2023.
WANG L L, HU S S.Foundation of Stress Waves[M]. 3rd ed. Beijing: National Defense Industry Press, 2023.
[24] RADFORD D D, DESHPANDE V S, FLECK N A.The Use of Metal Foam Projectiles to Simulate Shock Loading on a Structure[J]. International Journal of Impact Engineering, 2005, 31(9): 1152-1171.
[25] DESHPANDE V S, FLECK N A.One-Dimensional Response of Sandwich Plates to Underwater Shock Loading[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(11): 2347-2383.
[26] 张建军. 冲击载荷下梯度多孔金属力学行为研究[D]. 太原: 太原理工大学, 2016: 90-91.
ZHANG J J.Investigations of Mechanical Behaviors of Graded Cellular Metals Subjected to Impact Loading[D]. Taiyuan: Taiyuan University of Technology, 2016: 90-91.
[27] SHEN C J, YU T X, LU G.Double Shock Mode in Graded Cellular Rod under Impact[J]. International Journal of Solids and Structures, 2013, 50(1): 217-233.
[28] SHEN C J, LU G, YU T X.Investigation into the Behavior of a Graded Cellular Rod under Impact[J]. International Journal of Impact Engineering, 2014, 74: 92-106.
[29] ZHENG Z J, YU J L, LI J R.Dynamic Crushing of 2D Cellular Structures: A Finite Element Study[J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650-664.
[30] TAN P J, REID S R, HARRIGAN J J, et al.Dynamic Compressive Strength Properties of Aluminium Foams. Part II—'Shock' Theory and Comparison with Experimental Data and Numerical Models[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230.
[31] JING L, SU X Y, YANG F, et al.Compressive Strain Rate Dependence and Constitutive Modeling of Closed-Cell Aluminum Foams with Various Relative Densities[J]. Journal of Materials Science, 2018, 53(20): 14739-14757.
[32] 赵隆茂, 宋延泽, 李志强. 基于Voronoi随机模型研究多孔材料的动态特性[J]. 机械强度, 2009, 31(6): 932-938.
ZHAO L M, SONG Y Z, LI Z Q.Study of the Dynamic Crushing Behavior of Cellular Materials by Using the Voronoi Random Models[J]. Journal of Mechanical Strength, 2009, 31(6): 932-938.

基金

国家自然科学基金项目(12122211,12572442); 四川省自然科学基金项目(2022NSFSC0035)

PDF(3548 KB)

Accesses

Citation

Detail

段落导航
相关文章

/