轻质随机纤维网状材料力学性能及失效机理的实验与表征分析

张尧, 纪玮

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 24-30.

PDF(11159 KB)
PDF(11159 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (19) : 24-30. DOI: 10.19554/j.cnki.1001-3563.2025.19.003
冲击防护超材料与超结构

轻质随机纤维网状材料力学性能及失效机理的实验与表征分析

  • 张尧*, 纪玮
作者信息 +

Experimental and Characterization Study on Mechanical Behavior and Failure Mechanism of Light-weight Fibrous Network Materials

  • ZHANG Yao*, JI Wei
Author information +
文章历史 +

摘要

目的 为探究轻质随机纤维网状结构的宏观力学行为与其特有的网状微结构变形的内在机理,本文利用宏、细观力学分析方法,系统地研究酚醛浸渍碳纤维网状材料的力学行为。方法 通过轻质随机纤维网状材料单轴压缩、循环压缩力学实验,研究该类材料面内方向与面外方向力学行为的各向异性。结果 研究表明,该类材料面内方向的刚度、强度优于材料面外方向性能。进一步,采用原位观测方法表征了材料宏观力学性能及其典型失效模式。结论 揭示了微结构中纤维段弯曲、屈曲、纤维间接触滑移等典型变形机理和随机纤维网状结构宏观失效型内的内在关联机制,阐明了轻质随机纤维网状结构宏观各向异性的内在机理。该类材料有望在隔热、缓冲功能包装中应用。

Abstract

The work aims to explore the macroscopic mechanical properties of fibrous network materials and the intrisinc mechanism of their unique network microstructure deformation and systematically investigate the mechanical behavior of phenolic-impregnated carbon fibrous network materials by macroscopic and mesoscopic mechanical analysis. The anisotropic mechanical behaviors of the in-plane and out-of-plane directions of fibrous network materials were studied through uniaxial compression and cyclic compression mechanical experiments. Research showed that the stiffness and strength of the materials in the in-plane direction were superior to those in the out-of-plane direction. Further, in situ observation methods were used to characterize the macroscopic mechanical properties and typical failure modes. The work reveals the intrinsic correlation mechanism between typical deformation mechanisms such as fiber segment bending, buckling, and inter-fiber contact sliding in microstructures and the macroscopic failure types of fibrous network structures, and clarifies the intrinsic mechanism of macroscopic anisotropy in fibrous network structures. These materials are expected to be applied in heat insulation and cushioning functional packaging.

关键词

轻质随机纤维网状结构 / 力学性能 / 损伤演化

Key words

fibrous network structures / mechanical properties / damage evolution

引用本文

导出引用
张尧, 纪玮. 轻质随机纤维网状材料力学性能及失效机理的实验与表征分析[J]. 包装工程(技术栏目). 2025, 46(19): 24-30 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.003
ZHANG Yao, JI Wei. Experimental and Characterization Study on Mechanical Behavior and Failure Mechanism of Light-weight Fibrous Network Materials[J]. Packaging Engineering. 2025, 46(19): 24-30 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.003
中图分类号: TB332   

参考文献

[1] ZHOU R, TAN H, GAO Y, et al.Constructing Resilient Solid Electrolyte Interphases on Carbon Nanofiber Film for Advanced Potassium Metal Anodes[J]. Carbon, 2022, 186: 141-149.
[2] TRAN T T V, VO D N, NGUYEN S T, et al. Silver Nanowires Decorated Recycled Cigarette Filters Based Epoxy Composites with High Through-Plane Thermal Conductivity and Efficient Electromagnetic Interference Shielding[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106485.
[3] WANG Y X, CUI X Z, ZHANG J Q, et al.Advances of Atomically Dispersed Catalysts from Single-Atom to Clusters in Energy Storage and Conversion Applications[J]. Progress in Materials Science, 2022, 128: 100964.
[4] ZHANG K, KAN W H, ZHU Y M, et al.Achieving Ultra-High Strength Rapidly in Ti-3Al-8V-6Cr-4Mo-4Zr Alloy Processed by Directed Energy Deposition[J]. Materials & Design, 2022, 224: 111325.
[5] YARLAGADDAA J, RAVI TEJA M S, PULLA B P, et al. Finite Element Analysis of Mechanical and Structural Properties of Long Fiber-Reinforced Composites[C]// Contemporary Innovations in Engineering and Management, Nandyal, India. AIP Publishing, 2023: 140018.
[6] PRACHASEREE P, LEJEUNE E.Towards Understanding Structure-Function Relationships in Random Fiber Networks[J]. Journal of the Mechanics and Physics of Solids, 2025, 203: 106221.
[7] 孙陈诚, 胡子君, 鲁胜, 等. 刚性隔热材料的力学性能[J]. 宇航材料工艺, 2010, 40(2): 74-76.
SUN C C, HU Z J, LU S, et al.Mechanical Properties of Rigid Thermal Insulating Materials[J]. Aerospace Materials & Technology, 2010, 40(2): 74-76.
[8] KRASNOSHLYK V, ROLLAND DU ROSCOAT S, DUMONT P J J, et al. Three-Dimensional Visualization and Quantification of the Fracture Mechanisms in Sparse Fibre Networks Using Multiscale X-Ray Microtomography[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474(2215): 20180175.
[9] KRASNOSHLYK V, DU ROSCOAT S R, DUMONT P J J, et al. Influence of the Local Mass Density Variation on the Fracture Behavior of Fiber Network Materials[J]. International Journal of Solids and Structures, 2018, 138: 236-244.
[10] QI L H, WANG S, CHEN L, et al.Bioinspired Multiscale Micro-/Nanofiber Network Design Enabling Extremely Compressible, Fatigue-Resistant, and Rapidly Shape-Recoverable Cryogels[J]. ACS Nano, 2023, 17(7): 6317-6329.
[11] ZHOU Y F, CHEN J Q, LU Z Y, et al.Super-Strong Hydrogel Reinforced by an Interconnected Hollow Microfiber Network via Regulating the Water-Cellulose- Copolymer Interplay[J]. Science Bulletin, 2025, 70(6): 923-933.
[12] HATAMI-MARBINI H, MISHRA A.Propagation of Contractile-Induced Displacement in Prestressed Fibrous Materials[J]. Journal of Applied Mechanics, 2025, 92(9): 091002.
[13] ZHANG Y, WANG W H, WANG P F, et al.Microstructural Evolution and Failure in Fibrous Network Materials: Failure Mode Transition from the Competition between Bond and Fiber[J]. Materials, 2024, 17(9): 2110.
[14] ZHANG Y, LU Z X, YANG Z Y, et al.Fracture Behavior of Fibrous Network Materials: Crack Insensitivity and Toughening Mechanism[J]. International Journal of Mechanical Sciences, 2020, 188: 105910.
[15] ZHANG Y, LU Z X, YANG Z Y, et al.Resilient Carbon Fiber Network Materials under Cyclic Compression[J]. Carbon, 2019, 155: 344-352.
[16] ZHANG Y, LU Z X, YANG Z Y, et al.Compression Behaviors of Carbon-Bonded Carbon Fiber Composites: Experimental and Numerical Investigations[J]. Carbon, 2017, 116: 398-408.

基金

国家自然科学基金青年项目(12102225)

PDF(11159 KB)

Accesses

Citation

Detail

段落导航
相关文章

/