目的 为提高冲击防护结构的吸能效率,提出基于曲边构型设计的手性超结构,探究曲边构型对力学性能的影响规律。方法 将贝塞尔曲线引入手性超结构的肋构型设计中,优化设计传统直边四手性、反四手性和元四手性胞元,形成曲边构型。通过3D打印制备试验样件,开展准静态力学压缩试验。结果 研究发现,四手性超结构的变形模式为逐层压溃,反四手性和元四手性超结构则呈现局部破坏引发的大范围环状变形带,且曲边构型的压溃过程更缓和、变形更均匀,揭示了手性超结构的压缩变形特征分成3个阶段,且曲边构型弹性模量低,变形更平稳,可提高柔性和适应性,具有负泊松比特性;在能量吸收方面,曲边构型在四手性超结构中增强吸能效果,在元四手性超结构中与直边构型吸能相近,在反四手性超结构中吸能降低。结论 研究成果可为柔性冲击防护结构设计提供新的思路。
Abstract
To enhance the energy absorption efficiency of impact protection structures, the work aims to propose a chiral metastructure based on a curved-edge design and systematically investigate the effect of this geometric design on its key mechanical performance. Bézier curves were introduced into the rib design to optimize conventional straight-edged tetrachiral, anti-tetrachiral, and meta-tetrachiral unit cells, resulting in curved configurations. Experimental specimens were fabricated via 3D printing and then subject to quasi-static compression tests. The results revealed that the tetrachiral metastructure exhibited layer-by-layer crushing, whereas the anti-tetrachiral and meta-tetrachiral types developed large-scale annular deformation bands triggered by local failure. The curved configurations demonstrated a more gradual crushing process and more uniform deformation. Furthermore, the compressive deformation of the chiral metastructures was characterized by a three-stage behavior. The curved configurations exhibited a lower elastic modulus, more stable deformation, enhanced flexibility and adaptability, and negative Poisson's ratio properties. In terms of energy absorption, the curved configuration improved performance in the tetrachiral metastructure, matched the straight-edged design in the meta-tetrachiral metastructure, but underperformed in the anti-tetrachiral metastructure. These findings provide new insights for the design of flexible impact-resistant structures.
关键词
3D打印 /
手性超结构 /
力学性能 /
能量吸收
Key words
3D printing /
chiral metastructure /
mechanical performance /
energy absorption
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.
REN X, ZHANG X Y, XIE Y M.Research Progress in Auxetic Materials and Structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687.
[2] 刘凯, 曹晓飞, 李营, 等. 基于手性超结构设计的可变形机翼研究进展[J]. 航空科学技术, 2022, 33(1): 20-36.
LIU K, CAO X F, LI Y, et al.Research Progress of Deformable Aircraft Wing Based on Chiral Superstructures Design[J]. Aeronautical Science & Technology, 2022, 33(1): 20-36.
[3] QIU K P, WANG R Y, ZHU J H, et al.Optimization Design of Chiral Hexagonal Honeycombs with Prescribed Elastic Properties under Large Deformation[J]. Chinese Journal of Aeronautics, 2020, 33(3): 902-909.
[4] WU W W, HU W X, QIAN G A, et al.Mechanical Design and Multifunctional Applications of Chiral Mechanical Metamaterials: A Review[J]. Materials & Design, 2019, 180: 107950.
[5] WANG Z W, LUAN C C, LIAO G X, et al.Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, and Applications[J]. Advanced Engineering Materials, 2020, 22(10): 2000312.
[6] 蒋伟忠, 张毅, 朱一林, 等. 功能性负泊松比超材料研究进展与展望[J]. 应用力学学报, 2025, 42(3): 494-510.
JIANG W Z, ZHANG Y, ZHU Y L, et al.Research Progress and Prospect of Functional Auxetic Metamaterials[J]. Chinese Journal of Applied Mechanics, 2025, 42(3): 494-510.
[7] LI H M, MA Y B, WEN W B, et al.In Plane Mechanical Properties of Tetrachiral and Antitetrachiral Hybrid Metastructures[J]. Journal of Applied Mechanics, 2017, 84(8): 081006.
[8] QI D X, YU H B, HU W X, et al.Bandgap and Wave Attenuation Mechanisms of Innovative Reentrant and Anti-Chiral Hybrid Auxetic Metastructure[J]. Extreme Mechanics Letters, 2019, 28: 58-68.
[9] ZHUANG Z D, ZHU L W.In-Plane Compression Behavior of Meta-Tetrachiral and Common Auxetic Structures[J]. Physica Scripta, 2024, 99(2): 025946.
[10] 张政, 苏继龙. 六韧带手性蜂窝材料韧带的冲击动荷系数及稳定性分析[J]. 复合材料学报, 2019, 36(5): 1313-1318.
ZHANG Z, SU J L.Impact Dynamic Load Coefficient and Stability Analysis of Ligament of Hexachiral Honeycomb[J]. Acta Materiae Compositae Sinica, 2019, 36(5): 1313-1318.
[11] ZHANG C L, BA S B, ZHAO Z F, et al.Energy Absorption Characteristics of Novel Bio-Inspired Hierarchical Anti-Tetrachiral Structures[J]. Composite Structures, 2023, 313: 116860.
[12] LIU R Y, YAO G F, XU Z Z, et al.Mechanical Characteristics Analysis of 3D-Printing Novel Chiral Honeycomb Array Structures Based on Functional Principle and Constitutive Relationship[J]. Journal of Bionic Engineering, 2023, 20(5): 1917-1929.
[13] 王芳文, 赵娜, 王荣, 等. 基于手性特征可调力学参数结构设计方法研究[J]. 应用力学学报, 2021, 38(5): 1824-1830.
WANG F W, ZHAO N, WANG R, et al.Research on Design Method of Adjustable Mechanical Parameters Structure Based on Chiral Characteristics[J]. Chinese Journal of Applied Mechanics, 2021, 38(5): 1824-1830.
[14] LU Q Y, QI D X, LI Y, et al.Impact Energy Absorption Performances of Ordinary and Hierarchical Chiral Structures[J]. Thin-Walled Structures, 2019, 140: 495-505.
[15] WANG C M, DENG X L.Energy Absorption Characteristics of Novel Square Chiral Honeycomb[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46(4): 189.
[16] LU F C, LING X Y, LI W J, et al.On the In-Plane Effective Elastic Constants of a Novel Anti-Tetrachiral Meta-Structure with L-Type Ligaments[J]. Engineering Structures, 2024, 303: 117550.
[17] WANG G, WAN S K, HONG J, et al.In Plane Mechanical Properties of Hexagonal V-Chiral and Tri-Chiral Metamaterials[J]. Engineering Structures, 2024, 315: 118502.
[18] 耿一田, 郭英男, 袁伟, 等. 拓扑结构对二维手性负泊松比结构抗冲击性能的影响[J]. 航空工程进展, 2024, 15(5): 32-47.
GENG Y T, GUO Y N, YUAN W, et al.Influence of Topology on the Impact Resistance Performance of Two-Dimensional Chiral Negative Poisson's Ratio Structures[J]. Advances in Aeronautical Science and Engineering, 2024, 15(5): 32-47.
[19] AIROLDI A, BETTINI P, PANICHELLI P, et al.Chiral Topologies for Composite Morphing Structures - Part I: Development of a Chiral Rib for Deformable Airfoils[J]. Physica Status Solidi (b), 2015, 252(7): 1435-1445.
[20] AIROLDI A, BETTINI P, PANICHELLI P, et al.Chiral Topologies for Composite Morphing Structures - Part II: Novel Configurations and Technological Processes[J]. Physica Status Solidi (b), 2015, 252(7): 1446-1454.
[21] 李小飞, 张梦杰, 王文娟, 等. 变弯度机翼技术发展研究[J]. 航空科学技术, 2020, 31(2): 12-24.
LI X F, ZHANG M J, WANG W J, et al.Research on Variable Camber Wing Technology Development[J]. Aeronautical Science & Technology, 2020, 31(2): 12-24.
[22] WANG S, LIU H T.Energy Absorption Performance of the Auxetic Arc-Curved Honeycomb with Thickness and Arc Angle Gradient Based on Additive Manufacturing[J]. Materials Today Communications, 2023, 35: 105515.
[23] 王雪松, 刘卫东, 刘典. 新型反四手性蜂窝结构的面内拉伸弹性[J]. 复合材料学报, 2023, 40(8): 4849-4861.
WANG X S, LIU W D, LIU D.In-Plane Tensile Elasticity of a Novel Anti-Tetrachiral Cellular Structure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4849-4861.
[24] 刘卫东, 陈浩波, 郭苏, 等. 新型手性蜂窝结构设计与力学分析[J]. 复合材料学报, 2025, 42(6): 3548-3560.
LIU W D, CHEN H B, GUO S, et al.Design and Mechanical Analysis of a Novel Chiral Honeycomb Structure[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3548-3560.
[25] DING H P, GUO H, WANG Y S, et al.In-Plane Crushing Response of a Novel Arc-Curved Hybrid Honeycomb with Negative Poisson's Ratio[J]. Physica Status Solidi (b), 2024, 261(9): 2400086.
[26] QIN S G, DENG X L, YANG F M, et al.Energy Absorption Characteristics and Negative Poisson's Ratio Effect of Axisymmetric Tetrachiral Honeycombs under In-Plane Impact[J]. Composite Structures, 2023, 323: 117493.
[27] XU P L, LAN X, ZENG C J, et al.Compression Behavior of 4D Printed Metamaterials with Various Poisson's Ratios[J]. International Journal of Mechanical Sciences, 2024, 264: 108819.
[28] 郭着雨. 微结构调控下拉胀超材料力学特性研究及其在火箭武器的应用[D]. 南京: 南京理工大学, 2023: 27-36.
GUO Z Y.Investigation on the Mechanical Properties of Auxetic Structures under Microstructure Regulation and its Application in Rocket Weapons[D]. Nanjing: Nanjing University of Science and Technology, 2023: 27-36.
[29] 胡启华, 聂瑞, 张超, 等. 可调负泊松比蜂窝结构在变面积机翼上的应用[J]. 哈尔滨工业大学学报, 2024, 56(8): 24-33.
HU Q H, NIE R, ZHANG C, et al.Application of Adjustable Negative Poisson's Ratio Honeycomb Structure on Variable-Area Wing[J]. Journal of Harbin Institute of Technology, 2024, 56(8): 24-33.
[30] ZHOU X L, LIU H P, ZHANG J F, et al.4D Printed Bio-Inspired Polygonal Metamaterials with Tunable Mechanical Properties[J]. Thin-Walled Structures, 2024, 205: 112609.
[31] QI C, JIANG F, YANG S, et al.Multi-Scale Characterization of Novel re-Entrant Circular Auxetic Honeycombs under Quasi-Static Crushing[J]. Thin-Walled Structures, 2021, 169: 108314.
基金
国家自然科学基金项目(52505126); 国家自然科学基金国际(地区)合作项目(52361165626)