乏燃料贮运容器垂直吊具研制

郝建生, 李玉红, 姚琳

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (15) : 305-311.

PDF(925 KB)
PDF(925 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (15) : 305-311. DOI: 10.19554/j.cnki.1001-3563.2025.15.035
装备防护

乏燃料贮运容器垂直吊具研制

  • 郝建生*, 李玉红, 姚琳
作者信息 +

Development of Vertical Lifting Yoke for Spent Fuel Storage and Transportation Cask

  • HAO Jiansheng*, LI Yuhong, YAO Lin
Author information +
文章历史 +

摘要

目的 基于乏燃料贮运容器的操作特点,设计并制造一套专用的吊装工具,解决因容器重量大、操作空间有限、环境辐射等因素带来的操作问题,满足在容器接收、装卸料及运输前后准备过程中的操作要求,实现容器、乏燃料组件和操作人员的安全。方法 采用“要求分析-结构设计-计算校核-试验验证”的方法,首先对容器垂直吊具的设计要求进行分析,包括容器操作对吊具的功能要求、接口要求、环境要求和核电厂操作程序要求。其次在设计要求的基础上,提出垂直吊具的整体结构和气动控制系统的设计方案,并根据国外容器吊具的使用经验,对设计方案进行优化,尤其是对提升衬套的结构形式进行改进,并根据垂直吊具的载荷工况和使用环境,对其关键部件进行材料选择。然后提出垂直吊具的计算准则,对关键承载部件的危险截面进行了强度校核。最后制造出一套垂直吊具试验样机,并进行载荷试验和气密性试验,提出吊具的定期维护要求。结果 根据强度校核结果,所设计的垂直吊具各关键承载部件危险截面的计算应力均小于许用应力,安全裕量大于1。根据载荷试验和气密性试验结果可得,所制造的垂直吊具关键承载部位在试验后质量检验合格,气动控制系统密封性好。根据现场的使用情况,垂直吊具能够满足容器用户的实际需求。结论 垂直吊具的理论计算和试验的结果均满足设计要求,证明了垂直吊具的设计可以满足乏燃料贮运容器的功能要求和安全要求,同时为关键核设备的设计和研制提供了一种方法。

Abstract

The work aims to design and manufacture a dedicated set of lifting yoke based on the operational characteristics of spent fuel storage and transportation casks to address challenges arising from the heavy cask weight, limited operating space, and environmental radiation, thereby ensuring safe handling during cask receipt, fuel loading/unloading, and pre-/post-transportation preparations and safeguarding the cask, spent fuel assemblies, and operating personnel. The "requirement analysis - structural design - calculation verification - experimental validation" methodology was adopted. Firstly, the design requirements of the vertical lifting yoke for the cask were analyzed, including functional requirements for cask handling operations, interface requirements, environmental requirements, and operational procedure requirements of the nuclear power plant. Next, based on the design requirements, the overall structure and pneumatic control system of the vertical lifting yoke were proposed. The design was then optimized by leveraging international experience in cask lifting yoke, with particular improvements made to the structural configuration of the lifting bushing. Key components were selected based on the load conditions and operational environment of the vertical lifting yoke. Subsequently, the calculation criteria for the vertical lifting yoke were established, and strength verification was conducted for critical load-bearing sections of high-risk components. Finally, a prototype of the vertical lifting yoke was manufactured and subjected to load testing and airtightness testing. Periodic maintenance requirements for the lifting yoke were also defined. Based on the strength verification results, the calculated stresses of all critical load-bearing sections in the designed vertical lifting yoke were below the allowable stress, with a safety margin greater than 1. The load testing and airtightness testing confirmed that the manufactured vertical lifting yoke met quality inspection standards after testing, with the pneumatic control system demonstrating excellent sealing performance. Field applications proved that the vertical lifting yoke fully complied with the operational requirements of cask handling. Both theoretical calculations and experimental results of the vertical lifting yoke meet the design requirements, demonstrating that its design fulfills the functional and safety requirements for spent fuel storage and transportation containers. This also provides a validated methodology for the design and development of other critical nuclear equipment.

关键词

贮运容器 / 垂直吊具 / 乏燃料 / 安全

Key words

storage and transportation cask / vertical lifting yoke / spent fuel / safe

引用本文

导出引用
郝建生, 李玉红, 姚琳. 乏燃料贮运容器垂直吊具研制[J]. 包装工程(技术栏目). 2025, 46(15): 305-311 https://doi.org/10.19554/j.cnki.1001-3563.2025.15.035
HAO Jiansheng, LI Yuhong, YAO Lin. Development of Vertical Lifting Yoke for Spent Fuel Storage and Transportation Cask[J]. Packaging Engineering. 2025, 46(15): 305-311 https://doi.org/10.19554/j.cnki.1001-3563.2025.15.035
中图分类号: TL93+2.1   

参考文献

[1] 李越, 肖德涛, 刘新华, 等. 我国乏燃料运输现状探讨[J]. 辐射防护, 2016, 36(1): 31-39.
LI Y, XIAO D T, LIU X H, et al.Discussion on the Present Situation of Spent Fuel Transportation in China[J]. Radiation Protection, 2016, 36(1): 31-39.
[2] 洪哲, 赵善桂, 张春龙, 等. 我国乏燃料离堆贮存需求分析[J]. 核科学与工程, 2016, 36(3): 411-418.
HONG Z, ZHAO S G, ZHANG C L, et al.Analysis of the Demand for the Away-from-Reactor Storage of Spent Fuel in China[J]. Nuclear Science and Engineering, 2016, 36(3): 411-418.
[3] LI N, XU L, HAO J S.Existing Condition Analysis of Dry Spent Fuel Storage Technology[J]. Science & Technology Vision, 2016(6): 223-224.
[4] 陈瑜. 我乏燃料运输容器打破国外垄断[N]. 科技日报, 2017-12-25(1).
CHEN Y. Chinese Spent Fuel Transportation Cask Breaks Foreign Monopoly[N]. Science and Technology Daily, 2017-12-25(1).
[5] 中国核电网. 我国首台百吨级球墨铸铁乏燃料运输容器研制取得关键突破[J/OL].中国核电网[2022-7-10].https://www.cnnpn.cn/artical/31679.html.
China National Nuclear Power Network. China has Achieved a Key Breakthrough in the Development of its First 100-tonne Ductile Iron Spent Transport Cask[J/OL].China National Nuclear Power Network[2022-7-10]. https://www.cnnpn.cn/artical/31679.html.
[6] 生态环境部, 国家市场监督管理总局. 放射性物品安全运输规程: GB 11806—2019[S]. 北京: 中国环境出版社, 2019.
Ministry of Ecological Environment, State Administration for Market Regulation. Regulations for the Safe Transport of Radioactive Material: GB 11806-2019[S]. Beijing: China Environmental Science Press, 2019.
[7] 卢可可, 张白茹. 乏燃料运输容器排水及干燥方法浅析[J]. 科技视界, 2017(35): 78-79.
LU K K, ZHANG B R.Analysis of Drainage and Drying Methods of Spent Fuel Transport Container[J]. Science & Technology Vision, 2017(35): 78-79.
[8] International Atomic Energy Agency. Operation and Maintenance of Spent Fuel Storage and Transportation Casks/Containers[M]. Vienna: IAEA.TECDOC.1532, 2007.
[9] 卢可可, 郑岳山, 刘帅, 等. 乏燃料干法贮存容器金属密封结构研制[J]. 核科学与工程, 2023, 43(4): 906-912.
LU K K, ZHENG Y S, LIU S, et al.The Development of the Metal Containment Structure for the Spent Fuel Dry Storage Cask[J]. Nuclear Science and Engineering, 2023, 43(4): 906-912.
[10] 汪海, 童明炎, 孙胜, 等. 乏燃料运输容器研究进展[J]. 机械工程师, 2015(12): 65-69.
WANG H, TONG M Y, SUN S, et al.Research Progress of Spent Fuel Transport Container[J]. Mechanical Engineer, 2015(12): 65-69.
[11] 殷勇, 李其朋, 马庆俊. 高燃耗乏燃料运输容器结构设计研究[J]. 核科学与工程, 2017, 37(2): 308-313.
YIN Y, LI Q P, MA Q J.Study on the Structural Design of High Burnup Spent Fuel Transport Cask[J]. Nuclear Science and Engineering, 2017, 37(2): 308-313.
[12] 包博宇, 郝建生, 姚琳. 乏燃料容器垂直吊具衬套变形事件分析和设计优化[J]. 核安全, 2021, 20(3): 72-77.
BAO B Y, HAO J S, YAO L.Analysis of Vertical Lifting Yoke Bush Deformation Event of Spent Fuel Container and Design Optimization[J]. Nuclear Safety, 2021, 20(3): 72-77.
[13] 郝建生, 郑岳山, 李宁, 等. 运输保护装置及放射性物品的运输系统: 中国, ZL113321119B[P].2022-11-22.
HAO J S, ZHENG Y S, LI N, et al. Transportation system for Transport Protection Devices and Radioactive Material Transport Containers: China, ZL202110630 387.9[P].2022-11-22.
[14] American National Standards Institute, Inc. Radioactive Materials-Special Lifting Devices for Shipping Containers Weighing 10000 Pounds (4500 kg) or More: ANSI N14.6[S]. American: American National Standards Institute, 1993.
[15] BRUHN E F.Analysis and Design of Flight Vehicles Structures[M]. Tri-State Offset Company, Texas, America, Jacobs Publishing, 1973.
[16] YOUNG W C, BUDYNAS RICHARD G.Roark’s Formulas for Stress and Strain[M]. New York: McGraw-Hill-Seventh Edition, 2002.

PDF(925 KB)

Accesses

Citation

Detail

段落导航
相关文章

/