目的 对一种新型锂电气动射钉器的撞针机构在打钉过程中的冲击特性进行研究,为撞针机构的进一步优化提供参考。方法 建立基于显式动力学的撞针机构打钉过程仿真模型,并通过射钉穿透长度实验验证打钉过程仿真模型的可靠性,通过仿真对打钉过程中撞针与活塞的时间-应力历程进行研究。结果 仿真与试验穿透长度的误差为3.01%,得到仿真模型可靠性较好。在射钉即将穿透靶板的时刻,撞针与活塞的应力最大,撞针的最大应力为854.9 MPa,撞针材料60Si2Mn屈服强度为1 375 MPa,撞针最大应力小于其材料屈服强度,满足强度要求;活塞的最大应力为88.272 MPa,活塞材料7050-T7451屈服强度为470 MPa,活塞应力小于其材料屈服强度,满足强度要求。结论 撞针的最大应力区位于撞针后齿,撞针后齿承受了最大的冲击载荷,应在设计、制造中对后齿进行适当强化处理。
Abstract
The work aims to investigate the impact characteristics of a striker mechanism in a lithium pneumatic nailer during nailing, to provide a reference for further optimization of the striker mechanism. A simulation model of the nailing process was established based on explicit dynamics, and its reliability was verified through nail length of penetration experiments. The time-stress history of the striker mechanism and the piston during the nailing process was analyzed via simulation. The error between the simulated and the experimental penetration length was 3.01%, demonstrating good reliability of the simulation model. It was found that the stress of the striker mechanism and the piston was the greatest when the nail was about to penetrate the target plate. The maximum stress of the striker mechanism was 854.9 MPa, which was below the yield strength (1 375 MPa) of its material (60Si2Mn), meeting the strength requirement. The piston's stress was 88.272 MPa, also below the yield strength (470 MPa) of its material (7050-T7451), satisfying the strength requirement. In conclusion, the maximum stress concentration of the striker mechanism occurs at its rear tooth region, which undergoes the most significant impact loading during operation. To ensure structural integrity and service life, targeted reinforcement of the rear tooth should be implemented in both the design and manufacturing.
关键词
射钉器 /
撞针机构 /
穿透长度 /
应力 /
冲击特性
Key words
nailer /
striker mechanism /
length of penetration /
stress /
impact characteristics
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GILICH J, MESCHUT G, SCHIEMANN T, et al.Towards an Efficient Life Cycle Assessment of Production Processes for Mechanical Fastening Elements[J]. The International Journal of Life Cycle Assessment, 2025: 1-22.
[2] POKHAREL T, LEE J, GAD E.Power Actuated Fasteners in Australia: Application and Design[C]//Australasian Structural Engineering Conference: ASEC 2022: ASEC 2022. Barton, ACT: Engineers Australia, 2022: 452-460.
[3] 刘梦辉, 文华斌, 胡光忠, 等. 基于多目标优化的射钉枪消声结构参数优化[J/OL]. 四川轻化工大学学报(自然科学版), 2025: 1-8(2025-05-21). https://kns.cnki. net/KCMS/detail/detail.aspx filename=SCQX20250520001&dbname=CJFD&dbcode=CJFQ.
LIU M H, WEN H B, HU G Z, et al. Evolution of Silencing Structure Parameters of Powder-actuated Fastening Tool Based on Multi-Objective Optimization[J/OL]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2025: 1-8(2025-05-21). https://kns.cnki.net/KCMS/detail/detail.aspxfilename=SCQX20250520001&dbname=CJFD&dbcode=CJFQ.
[4] 张柏洋, 文华斌, 马若鑫, 等. 火药固钉器活塞复位过程动力学分析[J]. 四川轻化工大学学报(自然科学版), 2023, 36(2): 31-37.
ZHANG B Y, WEN H B, MA R X, et al.Dynamic Analysis of Piston Reset Process of Gunpowder Nail Fixer[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2023, 36(2): 31-37.
[5] 陈维. 射钉接地技术在海洋石油工程中的应用研究[J]. 石油和化工设备, 2025, 28(2): 48-51.
CHEN W.Application of X-BT Stud Earthing Technology in Offshore Petroleum Engineering[J]. Petro & Chemical Equipment, 2025, 28(2): 48-51.
[6] 吴鹏程, 王金娥. 一种新型的射钉枪撞针结构[J]. 机电工程技术, 2015, 44(11): 37-39.
WU P C, WANG J E.A New Piston Structure for Nail Gun[J]. Mechanical & Electrical Engineering Technology, 2015, 44(11): 37-39.
[7] 翁金学, 章巧芳, 彭伟. 基于LS-DYNA的气动钉枪枪针组件的动态特性分析[J]. 中国制造业信息化, 2012, 41(3): 43-46.
WENG J X, ZHANG Q F, PENG W.The Dynamic Analysis of Pneumatic Gun's Needle Assembly Based on LS-DYNA[J]. Manufacture Information Engineering of China, 2012, 41(3): 43-46.
[8] 姜涛, 周瑞丽, 郑士先, 等. 跌落冲击环境下气钉枪枪夹动力学特性分析[J]. 机械工程与自动化, 2016(6): 69-70.
JIANG T, ZHOU R L, ZHENG S X, et al.Study on Dynamic Property of Pneumatic Nail Gun's Shell under Drop Impact[J]. Mechanical Engineering & Automation, 2016(6): 69-70.
[9] 周莉. 基于Matlab/Simulink的射钉枪气缸系统工作过程的建模与仿真分析[J]. 沙洲职业工学院学报, 2014, 17(1): 18-25.
ZHOU L.Modeling and Simulation Analysis of Internal Combustion and Linear Momentum Mechanism Based on MATLAB/Simulink[J]. Journal of Shazhou Professional Institute of Technology, 2014, 17(1): 18-25.
[10] 李阳, 夏旭东, 陈建能. 便携式双气缸气钉枪研制及试验[J]. 浙江科技学院学报, 2017, 29(6): 457-463.
LI Y, XIA X D, CHEN J N.Development and Test of a Portable Double-cylinder Pneumatic Nail Gun[J]. Journal of Zhejiang University of Science and Technology, 2017, 29(6): 457-463.
[11] 杨发正, 张青山, 吴晓军, 等. 气动钉枪打钉方式介绍[J]. 凿岩机械气动工具, 2017, 43(4): 6-9.
YANG F Z, ZHANG Q S, WU X J, et al.Analysis and Research of Nailing Methods of the Air Nailer[J]. Rock Drilling Machinery & Pneumatic Tools, 2017, 43(4): 6-9.
[12] 谢少军, 李淑娟, 潘柏松, 等. 锂电钉枪能耗联合建模与数值分析方法研究[J]. 浙江工业大学学报, 2025, 53(2): 197-203.
XIE S J, LI S J, PAN B S, et al.Research on Joint Modeling and Numerical Analysis Methods for Energy Consumption of Lithium-ion Nail Guns[J]. Journal of Zhejiang University of Technology, 2025, 53(2): 197-203.
[13] 李耀宙, 张冰冰, 薛仲卿, 等. 高g值冲击下薄壁管抗冲击性能研究[J]. 包装工程, 2024, 45(19): 58-64.
LI Y Z, ZHANG B B, XUE Z Q, et al.Impact Resistance Performance of Thin-walled Tube under High g Impact[J]. Packaging Engineering, 2024, 45(19): 58-64.
[14] 高迪, 张艳涛, 李剑斌, 等. 爆燃驱动式射钉侵彻Q235靶板数值模拟[J]. 哈尔滨工业大学学报, 2019, 51(5): 32-37.
GAO D, ZHANG Y T, LI J B, et al.Numerical Simulation on Penetration of Q235 Steel Target for Deflagration-driving-type Nail[J]. Journal of Harbin Institute of Technology, 2019, 51(5): 32-37.
[15] 李鸿凯, 文华斌, 赵鹏宇, 等. 基于动态分层网格的电气动固钉器射钉威力分析[J]. 成都大学学报(自然科学版), 2025, 44(1): 65-71.
LI H K, WEN H B, ZHAO P Y, et al.Analysis of Nailing Power in Electro-pneumatic Riveters Based on Dynamic Layering Grid[J]. Journal of Chengdu University (Natural Science Edition), 2025, 44(1): 65-71.
基金
四川省科技计划重点研发项目(2021YFG0343)