结构型吸波材料的设计制备与电磁波吸收性能

孙凯, 刘晓青, 田加红, 沈勋, 赵炳秋, 王宗祥, 马英龙, 范润华

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (15) : 288-297.

PDF(8362 KB)
PDF(8362 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (15) : 288-297. DOI: 10.19554/j.cnki.1001-3563.2025.15.033
装备防护

结构型吸波材料的设计制备与电磁波吸收性能

  • 孙凯1, 刘晓青1, 田加红2*, 沈勋3*, 赵炳秋3, 王宗祥1, 马英龙1, 范润华1,4
作者信息 +

Design and Preparation of Structural Absorbing Materials and Their Electromagnetic Wave Absorption Performance

  • SUN Kai1, LIU Xiaoqing1, TIAN Jiahong2*, SHEN Xun3*, ZHAO Bingqiu3, WANG Zongxiang1, MA Yinglong1, FAN Runhua1,4
Author information +
文章历史 +

摘要

目的 旨在讨论多层结构、夹芯结构和超材料等结构型吸波材料的最新研究进展,通过分析不同结构的性能优势及特点来提供优化思路。方法 本文聚焦结构型吸波材料,重点综述多层结构、夹芯结构和超材料等结构型吸波材料的国内外研究现状,并对其电磁波吸收机理、设计构筑策略和性能调控机制进行系统和深入的阐述。进一步地,对结构型吸波材料在宽频谱设计、智能化调控和多功能应用进行展望。结论 结构型吸波材料具有高的设计自由度,通过组分与微结构的设计与剪裁,能够实现优异的吸波与承载性能,为革新传统吸波材料提供了新的技术方案与材料支撑,在舰船、飞机等装备中具有重要应用价值。

Abstract

The work aims to discuss the latest research progress of structural absorbing materials such as multi-layer structures, sandwich structures and metamaterials and provide optimization ideas by analyzing the performance advantages and characteristics of different structures. By focusing on structural absorbing materials, the research progress of structural absorbing materials, such as multi-layer structures, sandwich structures and metamaterials in China and abroad was reviewed and their electromagnetic wave absorption mechanisms, design and construction strategies, as well as the performance regulation mechanisms were elaborated. Further, the structural absorbing materials were expected to be used in broad spectrum design, intelligent control and multifunctional applications. Structural absorbing materials have high design freedom, and can realize excellent wave-absorbing and load-bearing properties through the design and tailoring of components and microstructures, which provides a new technical solution and material support for traditional absorbing materials, and is of great value for the application in the equipment of ships and airplanes.

关键词

电磁波吸收 / 结构功能一体化 / 多层结构 / 夹芯结构 / 超材料

Key words

electromagnetic wave absorption / structural-functional integration / multi-layer structures / sandwich structures / metamaterial

引用本文

导出引用
孙凯, 刘晓青, 田加红, 沈勋, 赵炳秋, 王宗祥, 马英龙, 范润华. 结构型吸波材料的设计制备与电磁波吸收性能[J]. 包装工程(技术栏目). 2025, 46(15): 288-297 https://doi.org/10.19554/j.cnki.1001-3563.2025.15.033
SUN Kai, LIU Xiaoqing, TIAN Jiahong, SHEN Xun, ZHAO Bingqiu, WANG Zongxiang, MA Yinglong, FAN Runhua. Design and Preparation of Structural Absorbing Materials and Their Electromagnetic Wave Absorption Performance[J]. Packaging Engineering. 2025, 46(15): 288-297 https://doi.org/10.19554/j.cnki.1001-3563.2025.15.033
中图分类号: TB34   

参考文献

[1] 方源, 王华侨, 杨鑫, 等. 碳纤维基复合吸波材料的研究进展[J/OL]. 复合材料学报, 1-16(2025-02-24)[2025-05-14]. https://link.cnki.net/doi/10.13801/j.cnki.fhclxb.0250224.005.
FANG Y, WANG H Q, YANG X, et al. Research Progress of Carbon Fiber-Based Composite Microwave Absorbing Materials[J/OL]. Acta Materiae Compositae Sinica, 1-16(2025-02-24)[2025-05-14]. https://link.cnki.net/oi/10.13801/j.cnki.fhclxb.20250224.005.
[2] 王一帆, 朱琳, 韩露, 等. 电磁吸波材料的研究现状与发展趋势[J]. 复合材料学报, 2023, 40(1): 1-12.
WANG Y F, ZHU L, HAN L, et al.Research Status and Development Trend of Electromagnetic Absorbing Materials[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 1-12.
[3] 朱英富, 张国良. 舰船隐身技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2012: 23-28.
ZHU Y F, ZHANG G L.Ship Stealth Technology[M]. Harbin: Harbin Engineering University Press, 2012: 23-28.
[4] ZHANG Q D, LIU K Y, FANGLIANG, et al. Research on Design of New Low Frequency Broadband Electromagnetic Stealth Structure[M]//Proceedings of the 10th Chinese Society of Aeronautics and Astronautics Youth Forum. Singapore: Springer Nature Singapore, 2023: 337-347.
[5] 曹敏, 邓雨希, 徐康, 等. 新型碳基磁性复合吸波材料的研究进展[J]. 复合材料学报, 2020, 37(12): 3004-3016.
CAO M, DENG Y X, XU K, et al.Research Progress of New Carbon Based Magnetic Composite Electromagnetic Waveabsorbing Materials[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3004-3016.
[6] XIAO T, KUANG J L, ZHENG Q F, et al.Interfacial Polarization and Tunable Dielectric Properties of Coaxial SiC/CFs Materials[J]. Journal of Alloys and Compounds, 2020, 831: 154753.
[7] 张晗, 闫大海, 钱治强. 水面舰船隐身技术研究[J]. 舰船科学技术, 2020, 42(19): 140-145.
ZHANG H, YAN D H, QIAN Z Q.Research on Surface Ship Stealth Technology[J]. Ship Science and Technology, 2020, 42(19): 140-145.
[8] 何小锋. 现代雷达隐身技术发展[J]. 现代导航, 2015, 6(3): 306-309.
HE X F.Development of Modern Radar Stealth Technology[J]. Modern Navigation, 2015, 6(3): 306-309.
[9] 李妹. 舰船外形雷达隐身优化设计[J]. 舰船科学技术, 2023, 45(19): 161-164.
LI M.Research on Optimization Design of Radar Stealth for Ship Shape[J]. Ship Science and Technology, 2023, 45(19): 161-164.
[10] BAI Y H, XIE B, LI H W, et al.Mechanical Properties and Electromagnetic Absorption Characteristics of Foam Cement-Based Absorbing Materials[J]. Construction and Building Materials, 2022, 330: 127221.
[11] 孙凯, 刘晓青, 王忠阳, 等. 海洋防腐涂层的设计构筑与防腐机制[J/OL]. 材料开发与应用, 1-10(2025-05-29)[2025-06-11]. https://link.cnki.net/doi/0.19515/j.cnki.1003-1545.20250529.001.
SUN K, LIU X Q, WANG Z Y, et al. Design and Construction of Marine Anticorrosive Coating and Anticorrosive Mechanism[J/OL]. Development and Application of Materials, 1-10(2025-05-29)[2025-06-11]. https://link. nki.net/doi/10.19515/j.cnki.1003-1545.20250529.001.
[12] PANG H F, DUAN Y P, DAI X H, et al.The Electromagnetic Response of Composition-Regulated Honeycomb Structural Materials Used for Broadband Microwave Absorption[J]. Journal of Materials Science & Technology, 2021, 88: 203-214.
[13] 彭夏文, 张景钦, 陈凌云, 等. 雷达和红外隐身材料的最新研究进展及挑战[J]. 材料研究与应用, 2025, 19(1): 15-36.
PENG X W, ZHANG J Q, CHEN L Y, et al.The Latest Advancements and Challenges in Radar and Infrared Stealth Materials[J]. Materials Research and Application, 2025, 19(1): 15-36.
[14] 张磊, 李永清, 王静南, 等. 雷达隐身复合材料研究进展及在舰船上的应用[J]. 舰船科学技术, 2020, 42(3): 144-149.
ZHANG L, LI Y Q, WANG J N, et al.The Research and Application of Radar Wave Stealth Composites for Warship[J]. Ship Science and Technology, 2020, 42(3): 144-149.
[15] LIU H T, CHENG H F, TIAN H.Design, Preparation and Microwave Absorbing Properties of Resin Matrix Composites Reinforced by SiC Fibers with Different Electrical Properties[J]. Materials Science and Engineering: B, 2014, 179: 17-24.
[16] 张立中. 宽频结构型微波吸收材料的设计研究[J]. 导弹与航天运载技术, 1995(4): 48-54.
ZHANG L Z.Design Study of Radar Absorbent Material Composites[J]. Missiles and Space Vehicles, 1995(4): 48-54.
[17] 刘雄飞, 王壮, 吴尧尧, 等. 电磁吸波结构研究进展[J]. 材料导报, 2023, 37(22): 19-26.
LIU X F, WANG Z, WU Y Y, et al.A Review of Electromagnetic Wave Absorbing Structures[J]. Materials Reports, 2023, 37(22): 19-26.
[18] CHOI W H, KWAK B S, KWEON J H, et al.Radar-Absorbing Foam-Based Sandwich Composite with Electroless Nickel-Plated Glass Fabric[J]. Composite Structures, 2020, 243: 112252.
[19] YUAN J, XIAO G, CAO M S.A Novel Method of Computation and Optimization for Multi-Layered Radar Absorbing Coatings Using Open Source Software[J]. Materials & Design, 2006, 27(1): 45-52.
[20] GOUDOS S K.A Versatile Software Tool for Microwave Planar Radar Absorbing Materials Design Using Global Optimization Algorithms[J]. Materials & Design, 2007, 28(10): 2585-2595.
[21] SUN Y, PANG Y Q, CHEN R H, et al.Multilayer Metasurface-Based Sandwich Composites for Wideband Radar Cross Section Reduction[J]. Composites Science and Technology, 2023, 241: 110159.
[22] HE L, LI X, ZHAO Y C, et al.The Multilayer Structure Design of Magnetic-Carbon Composite for Ultra-Broadband Microwave Absorption via PSO Algorithm[J]. Journal of Alloys and Compounds, 2022, 913: 165088.
[23] CHEN M X, ZHU Y, PAN Y B, et al.Gradient Multilayer Structural Design of CNTS/SiO2 Composites for Improving Microwave Absorbing Properties[J]. Materials & Design, 2011, 32(5): 3013-3016.
[24] SUN X, LI W, QU H J, et al.Multi-Scale Structural Design of Multilayer Magnetic Composite Materials for Ultra-Wideband Microwave Absorption[J]. Carbon, 2024, 230: 119604.
[25] LI D M, YANG J J, WANG X, et al.Ultrabroadband Metamaterial Absorber Based on Effectively Coupled Multilayer HIS Loaded Structure with Dallenbach Layer[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 70(1): 232-238.
[26] 纪正江, 董佳晨, 梁良, 等. 面向飞机蒙皮的碳纤维预浸料吸波承载一体化层合结构设计[J]. 复合材料学报, 2024, 41(9): 4791-4801.
JI Z J, DONG J C, LIANG L, et al.Design of Carbon Fiber Prepreg Electromagnetic Wave Absorbing and Load-Bearing Integrated Laminated Structure for Aircraft Skin[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4791-4801.
[27] 邓德宽. 复合材料蜂窝夹芯吸波结构的动力学模型研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 4-11.
DENG D K.Research on Dynamic Model of Composite Honeycomb Sandwich Absorbing Structure[D]. Harbin: Harbin Institute of Technology, 2020: 4-11.
[28] KWAK B S, CHOI W H, NOH Y H, et al.Nickel-Coated Glass/Epoxy Honeycomb Sandwich Composite for Broadband RCS Reduction[J]. Composites Part B: Engineering, 2020, 191: 107952.
[29] WANG H, XIU X, WANG Y, et al.Paper-Based Composites as a Dual-Functional Material for Ultralight Broadband Radar Absorbing Honeycombs[J]. Composites Part B: Engineering, 2020, 202: 108378.
[30] CHOI W H, KIM C G.Broadband Microwave-Absorbing Honeycomb Structure with Novel Design Concept[J]. Composites Part B: Engineering, 2015, 83: 14-20.
[31] LIU S K, ZHANG F X, CHAO B, et al.Based on the Preparation of Dual-Absorber Agents Using Ni and Ni/rGO for the Fabrication of a Dual Honeycomb Nested Structure for Wideband Microwave Absorption[J]. Composites Part B: Engineering, 2024, 284: 111735.
[32] GONG P, LI Y, XIN C X, et al.Multimaterial 3D-Printing Barium Titanate/Carbonyl Iron Composites with Bilayer-Gradient Honeycomb Structure for Adjustable Broadband Microwave Absorption[J]. Ceramics International, 2022, 48(7): 9873-9881.
[33] YAO W B, ZHOU X H, GAO Y, et al.Design-Manufacturing-Performance of Electromagnetic Absorbing/Load Bearing Three-Dimensional Honeycomb Woven Composites[J]. Composite Structures, 2025, 351: 118581.
[34] AN Q, LI D W, LIAO W H, et al.A Novel Ultra-Wideband Electromagnetic-Wave-Absorbing Metastructure Inspired by Bionic Gyroid Structures[J]. Advanced Materials, 2023, 35(26): 2300659.
[35] LIU Z X, ZHANG R B, WANG S J, et al.Design and Fabrication of an All-Composite Ultra-Broadband Absorbing Structure with Superior Load-Bearing Capacity[J]. Composites Science and Technology, 2023, 240: 110094.
[36] WANG Y R, SU R Y, CHEN J Y, et al.3D Printed Bioinspired Flexible Absorber: Toward High-Performance Electromagnetic Absorption at 75-110 GHz[J]. ACS Applied Materials & Interfaces, 2023, 15(46): 53996-54005.
[37] 王永贵, 梁宪珠, 薛向晨, 等. 热压罐工艺的传热分析和框架式模具温度场分布[J]. 航空制造技术, 2008, 51(22): 80-83.
WANG Y G, LIANG X Z, XUE X C, et al.Analysis of Heat Transfer and Temperature Field Distribution on Frame Tooling in Autoclave Process[J]. Aeronautical Manufacturing Technology, 2008, 51(22): 80-83.
[38] 范润华, 王宗祥, 杨鹏涛, 等. 超材料在舰船装备领域应用研究进展[J]. 材料开发与应用, 2024, 39(5): 1-16.
FAN R H, WANG Z X, YANG P T, et al.Research Progress on Application of Metamaterials in Ship Equipment[J]. Development and Application of Materials, 2024, 39(5): 1-16.
[39] WANG Q Y, LIU J, LI Y D, et al.A Literature Review of MOF Derivatives of Electromagnetic Wave Absorbers Mainly Based on Pyrolysis[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(3): 446-473.
[40] 肖荣. 基于碳系导电膜的宽带和吸/透一体吸波超材料设计、制备及性能研究[D]. 太原: 中北大学, 2024: 3-9.
XIAO R.Design, Preparation and Properties of Broadband and Absorption/Transmission Integrated Wave-Absorbing Metamaterials Based on Carbon-Based Conductive Films[D]. Taiyuan: North University of China, 2024: 3-9.
[41] WEN J, SUN W, LIANG B Z, et al.Dynamically Switchable Broadband-Narrowband Terahertz Metamaterial Absorber Based on Vanadium Dioxide and Multilayered Structure[J]. Optics Communications, 2023, 545: 129710.
[42] 吴金津, 戴忠晨, 方振卫, 等. 电磁波吸收超材料的研究进展[J]. 包装工程, 2024, 45(23): 72-90.
WU J J, DAI Z C, FANG Z W, et al.Research Progress of Electromagnetic Wave Absorbing Metamaterials[J]. Packaging Engineering, 2024, 45(23): 72-90.
[43] LANDY N I, SAJUYIGBE S, MOCK J J, et al.Perfect Metamaterial Absorber[J]. Physical Review Letters, 2008, 100(20): 207402.
[44] WANG L S, XIA D Y, FU Q H, et al.Thermally Tunable Ultra-Thin Metamaterial Absorber at P Band[J]. Journal of Electromagnetic Waves and Applications, 2019, 33(11): 1406-1415.
[45] YU Q M, ZHANG X W, LIU S B, et al.Ultrathin and Ultra-Wideband P-Band Absorber Using Magnetic Material and Fan-Shaped Resonators[C]//2021 Photonics & Electromagnetics Research Symposium (PIERS). Hangzhou, China. IEEE, 2021: 636-639.
[46] 陈孟州, 汪刘应, 刘顾, 等. 可调吸波超材料研究进展[J/OL]. 材料工程, 1-16(2024-09-03)[2025-07-15]. ttp://kns.cnki.net/kcms/detail/11.1800.TB.20240903.1311.005.html.
CHEN M Z, WANG L Y, LIU G, et al. Research Progress on Tunable Absorbing Metamaterials[J/OL]. Journal of Materials Engineering, 1-16(2024-09-03) 2025-07-15]. http://kns.cnki.net/kcms/detail/11.1800.TB. 0240903.1311.005.html.
[47] 石泽山. 基于柔软磁性材料和LC谐振电路的吸波体及其软件自动化设计方法[D]. 兰州: 兰州大学, 2018: 8-12.
SHI Z S.Absorber Based on Soft Magnetic Materials and LC Resonant Circuits and Its Software Automated Design Method[D]. Lanzhou: Lanzhou University, 2018: 8-12.
[48] 汤文轩, 崔铁军. 电磁超材料的发展与应用[J]. 光电子技术, 2024, 44(2): 85-93.
TANG W X, CUI T J.Development and Applications of Metamaterials[J]. Optoelectronic Technology, 2024, 44(2): 85-93.
[49] 田宇泽, 金晶, 杨河林, 等. 微波电磁超材料设计与应用研究进展[J]. 中国科学: 物理学力学天文学, 2023, 53(9): 197-207.
TIAN Y Z, JIN J, YANG H L, et al.Research Progress on Design and Application of Microwave Electromagnetic Metamaterial[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2023, 53(9): 197-207.
[50] FENG L, JIN S C, LI W C, et al.Electromagnetic Wave Absorbing Properties of Short Carbon Fiber/Bismaleimide Foams Metamaterial[J]. Materials Science and Engineering: B, 2024, 310: 117730.
[51] HAN G Y, LIU Y Q, ZHAO G Z.Double-Layer Stepped Metamaterial with Broadband and Wide-Angle Electromagnetic Wave Absorbing Performance Based on Uniform Epoxy Composite Plate from Layer-by-Layer Gel/Integrated Solidification Process[J]. Journal of Alloys and Compounds, 2025, 1020: 179502.
[52] ZHOU Q, SHI T T, XUE B, et al.Gradient Carbonyl-Iron/Carbon-Fiber Reinforced Composite Metamaterial for Ultra-Broadband Electromagnetic Wave Absorption by Multi-Scale Integrated Design[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(6): 1198-1206.
[53] 黄金国, 郭宇, 赵治亚, 等. 基于有源超材料的可调超薄雷达吸波体研究[J]. 材料工程, 2019, 47(6): 77-81.
HUANG J G, GUO Y, ZHAO Z Y, et al.Investigation on Tunable Ultra-Thin Radar Absorber Based on Active Metamaterial[J]. Journal of Materials Engineering, 2019, 47(6): 77-81.
[54] ZHANG Z, LEI H S, DUAN S Y, et al.Bioinspired Double-Broadband Switchable Microwave Absorbing Grid Structures with Inflatable Kresling Origami Actuators[J]. Advanced Science, 2024, 11(4): 2306119.

基金

国家自然科学基金(52271182,52101178)

PDF(8362 KB)

Accesses

Citation

Detail

段落导航
相关文章

/