目的 针对包装生产线中喷码装箱工序对运动自由度的差异化需求,提出一种基于可变轴线运动副(vA副)的喷码装箱可重构机器人。方法 基于螺旋理论,分析机构处于2种模式下的自由度性质,利用闭环矢量法求解机构运动学反解,采用粒子群优化算法对机构正解进行求解,并对雅可比矩阵进行分析,以评估运动状态;分析机构在2种模式下末端执行器的可达工作空间,并对灵巧度进行分析。结果 机构在2-RPS/UPU/UPS模式下具有2R1T自由度,在2-UPS/RPS/UPU模式下具有2R2T自由度,工作空间连续。结论 机构在2-RPS/UPU/UPS模式下可用于产品喷码作业,在2-UPS/RPS/UPU模式下可用于产品装箱作业,提高了产品的生产效率。
Abstract
The work aims to propose a reconfigurable robot for coding and packing based on variable axis motion pair (vA pair), in view of the differentiated requirements of the degree of freedom of motion in the coding and packing processes of the packaging production line. The screw theory was employed to analyze the DOF characteristics of the mechanism under two operational modes. The closed-loop vector method was utilized to derive the inverse kinematics solutions for both modes, while the particle swarm optimization (PSO) algorithm was adopted to solve the forward kinematics. The Jacobian matrix was analyzed to evaluate the kinematic performance. The reachable workspace of the end-effector under both modes was investigated, and the dexterity was assessed through local conditioning indices. The results demonstrated that the mechanism achieved 2 rotations and 1 translation DOF (2R1T) in 2-RPS/UPU/UPS mode and 2 rotations and 2 translations DOF (2R2T) in 2-UPS/RPS/UPU mode, with a continuous and void-free workspace. In conclusion, in 2-RPS/UPU/UPS mode, the mechanism is suitable for product coding operations, while 2-UPS/RPS/UPU mode enables efficient packing tasks. This design significantly enhances production efficiency.
关键词
可重构并联机构 /
位置正逆解 /
工作空间 /
灵巧度 /
喷码 /
装箱
Key words
reconfigurable parallel mechanism /
position forward and inverse solutions /
workspace /
dexterity /
inkjet coding /
case packing
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 于靖军, 刘凯, 孔宪文. 多模式机构研究进展[J]. 机械工程学报, 2020, 56(19): 14-27.
YU J J, LIU K, KONG X W.State of the Art of Multi-Mode Mechanisms[J]. Journal of Mechanical Engineering, 2020, 56(19): 14-27.
[2] 柴超, 李瑞琴. 一种可重构四足移动机器人的几何约束及其抗倾覆能力[J]. 机械传动, 2022, 46(4): 127-134.
CHAI C, LI R Q.Geometric Constraints and Anti-Overturning Capability of a Reconfigurable Quadruped Mobile Robot[J]. Journal of Mechanical Transmission, 2022, 46(4): 127-134.
[3] 张磊, 李瑞琴, 宁峰平, 等. 双模式可重构并联机构的构型及其在酒盒产线中的应用[J]. 包装工程, 2024, 45(1): 201-207.
ZHANG L, LI R Q, NING F P, et al.Configuration of Dual-Mode Reconfigurable Parallel Mechanism and Its Application in Wine Box Production Line[J]. Packaging Engineering, 2024, 45(1): 201-207.
[4] LI Q C, HERVE J M.Parallel Mechanisms with Bifurcation of Schoenflies Motion[J]. IEEE Transactions on Robotics, 2009, 25(1): 158-164.
[5] YE W, FANG Y F, ZHANG K T, et al.A New Family of Reconfigurable Parallel Mechanisms with Diamond Kinematotropic Chain[J]. Mechanism and Machine Theory, 2014, 74: 1-9.
[6] 叶伟, 方跃法, 郭盛, 等. 基于运动限定机构的可重构并联机构设计[J]. 机械工程学报, 2015, 51(13): 137-143.
YE W, FANG Y F, GUO S, et al.Design of Reconfigurable Parallel Mechanisms with Discontinuously Movable Mechanism[J]. Journal of Mechanical Engineering, 2015, 51(13): 137-143.
[7] DAI J S, WANG D L, CUI L.Orientation and Workspace Analysis of the Multifingered Metamorphic Hand-Metahand[J]. IEEE Transactions on Robotics, 2009, 25(4): 942-947.
[8] ZHANG L P, DAI J.Reconfiguration of Spatial Metamorphic Mechanisms[J]. ASME Journal of Mechanisms and Robotics, 2009, 1(2): 1-8.
[9] 崔鑫佳, 李清, 宁峰平, 等. 2-UPS/UPR/(rT)PS可重构并联机构的运动学分析及应用[J]. 包装工程, 2024, 45(3): 226-233.
CUI X J, LI Q, NING F P, et al.Kinematics Analysis and Application of Reconfigurable 2-UPS/UPR/(rT)PS Parallel Mechanism[J]. Packaging Engineering, 2024, 45(3): 226-233.
[10] HUANG G Y, ZHANG D, ZOU Q, et al.Analysis and Design Method of a Class of Reconfigurable Parallel Mechanisms by Using Reconfigurable Platform[J]. Mechanism and Machine Theory, 2023, 181: 105215.
[11] 马春生, 米文博, 尹晓秦, 等. 2-SPR/(U+UPR)P(vA)可重构并联机构的运动学与工作空间研究[J]. 机械传动, 2021, 45(6): 1-7.
MA C S, MI W B, YIN X Q, et al.Research of Kinematics and Workspace of 2-SPR/(U+UPR)P(vA)Reconfigurable Parallel Mechanism[J]. Journal of Mechanical Transmission, 2021, 45(6): 1-7.
[12] 潘武星, 李瑞琴, 宁峰平, 等. 可重构解耦并联移动机器人构型综合及性能分析[J]. 机械传动, 2024, 48(3): 45-51.
PAN W X, LI R Q, NING F P, et al.Configuration Synthesis and Performance Analysis of Reconfigurable Decoupled Parallel Mobile Robots[J]. Journal of Mechanical Transmission, 2024, 48(3): 45-51.
[13] LIU R, LI R M, YAO Y N, et al.A Reconfigurable Deployable Spatial 8R-Like Mechanism Consisting of Four Angulated Elements Connected by R Joints[J]. Mechanism and Machine Theory, 2023, 179: 105103.
[14] ZHANG L, LI R Q, NING F P, et al.Performance Analysis and Optimization Design of a Dual-Mode Reconfigurable Ankle Joint Parallel Rehabilitation Mechanism[J]. Applied Sciences, 2024, 14(5): 1757.
[15] CHAI C, LI R Q, NING F P, et al.Motion Branch Transformation of 3(Rc)PU Parallel Mechanism with Reconfigurable Joint and Kinematic Performance Index[J]. Applied Sciences, 2024, 14(13): 5569.
[16] 文杰, 马春生, 刘建国, 等. 基于2-RCU/CUR并联机构的运动学分析[J]. 包装工程, 2022, 43(3): 228-233.
WEN J, MA C S, LIU J G, et al.Kinematics Analysis Based on 2-RCU/CUR Parallel Mechanism[J]. Packaging Engineering, 2022, 43(3): 228-233.
[17] 米文博, 马春生, 李瑞琴, 等. 应用于药品包装生产线的2-UPR/RSPR并联机构的工作空间分析[J]. 包装工程, 2021, 42(3): 171-176.
MI W B, MA C S, LI R Q, et al.Workspace of 2-UPR/RSPR Parallel Mechanism Applied to Medicine Packaging Production Line[J]. Packaging Engineering, 2021, 42(3): 171-176.
[18] YE W, CHAI X X, ZHANG K T.Kinematic Modeling and Optimization of a New Reconfigurable Parallel Mechanism[J]. Mechanism and Machine Theory, 2020, 149: 103850.
[19] 陈建平, 赵海军, 梁湘鹏, 等. 绝缘子涂层检测机器人研究设计[J]. 机械设计与制造, 2018(4): 238-241.
CHEN J P, ZHAO H J, LIANG X P, et al.Research and Design of Inspection Robot for Insulator Coating[J]. Machinery Design & Manufacture, 2018(4): 238-241.
基金
山西省重点研发计划(202202150401018)