目的 凸曲线溜槽装置常用于轻质棒料的姿态变换,针对现有轻质棒料溜槽曲线设计缺乏理论指导,且曲线优劣无法量化评估,导致卡堵和物料损伤等问题,通过动力学分析和数值仿真,提出一种针对凸曲线溜槽的量化评估及优化方法,为凸曲线溜槽的设计和优化提供参考。方法 以烟支这一典型轻质棒料为研究对象,基于ADAMS仿真软件建立物料与溜槽装置的动力学模型,对影响上述现象的关键因素进行分析。通过动力学分析物料在凸曲线溜槽上的运动行为,并基于关键影响因素提出评估及优化方法。结果 通过优化溜槽曲线,有效解决了物料在接触竖直挡板前飞离溜槽的问题,使得物料离开溜槽的倾斜角由64.70°提高至70.20°,评估指标理论计算值由0.97提高至1.45,评估结果与仿真及实验结果接近。结论 提出了一种针对凸曲线溜槽的量化评估及优化方法,基于该优化方法得到的优化曲线相对于原曲线,降低了物料损伤程度及卡堵风险。同时,仿真及实物测试验证了所提出评估方法的有效性,适用于实际场景。
Abstract
The convex curved chute device is commonly used for the attitude transformation of lightweight rod materials. However, the current design of the chute curve for these materials lacks theoretical guidance, and its quality cannot be quantitatively assessed, leading to issues such as material blockage and damage. The work aims to propose a method for the quantitative evaluation and optimization of convex curved chutes through dynamic analysis and numerical simulation, so as to provide a solid reference for the design and optimization of such chutes. With cigarette rods, a typical lightweight rod material, as the research object, a dynamic model of the material and chute system was established with ADAMS simulation software. The key factors influencing the material behavior were analyzed. The dynamic motion of the material along the convex curved chute was studied, and based on these key factors, an evaluation and optimization method was developed. The optimized chute curve successfully addressed the issue of the material flying off the chute before reaching the vertical baffle. The departure angle of the material increased from 64.70° to 70.20°, and the theoretical value of the evaluation index improved from 0.97 to 1.45. These evaluation results aligned closely with both simulation and experimental outcomes, demonstrating a consistent trend. In conclusion, the proposed method for quantitative evaluation and optimization of convex curved chutes offers significant improvements. The optimized curve reduces material damage and minimizes the risk of blockage compared to the original design. Both simulation and physical testing validate the effectiveness of the proposed evaluation method, confirming its applicability in real-world scenarios.
关键词
动力学分析 /
性能评估 /
ADAMS仿真 /
溜槽设计
Key words
dynamic analysis /
performance evaluation /
ADAMS simulation /
chute design
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] JACOBS-CAPDEVILLE P, KUANG S B, YU A B.Unrevealing Energy Dissipation during Iron Ore Transfer through Chutes with Different Designs[J]. Powder Technology, 2024, 435: 119446.
[2] SALINIC Z S Z. Optimization of Gravity Flow Discharge Chutes under The Speed Dependent Resisting Forces: Maximizing Exit Velocity[J]. Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems, 2015, 273.
[3] 孙晓霞, 胡枫, 孟文俊. 基于CFD-DEM耦合的梯级溜槽的设计与分析[J]. 中国工程机械学报, 2024, 22(5): 652-656.
SUN X X, HU F, MENG W J.Design and Analysis of Transfer Chute Based on CFD-DEM Coupling[J]. Chinese Journal of Construction Machinery, 2024, 22(5): 652-656.
[4] 梁梦瑶, 黄兴元. 柚子调向机滑道机构的运动仿真与分析[J]. 包装与食品机械, 2023, 41(1): 107-112.
LIANG M Y, HUANG X Y.Motion and Simulation Analysis of the Slide Mechanism in a Grapefruit Reorientation[J]. Packaging and Food Machinery, 2023, 41(1): 107-112.
[5] 曹阳, 龙雨, 马军, 等. 基于近似模型和GMSCVE的溜槽结构设计优化[J]. 机械设计, 2023, 40(2): 84-89.
CAO Y, LONG Y, MA J, et al.Design Optimization of Chute Structure Based on Surrogate Model and GMSCVE[J]. Journal of Machine Design, 2023, 40(2): 84-89.
[6] LERHER T, GRUM Z, MOTALN M, et al.Wear Simulation of the Conveyor Belt Transfer Chute Using the DEM[J]. International Journal of Simulation Modelling, 2024, 23(1): 77-88.
[7] 谭兴富, 卢军, 常发军, 等. 音频数据驱动的洗煤厂溜槽堵塞检测[J]. 煤炭工程, 2024, 56(10): 224-230.
TAN X F, LU J, CHANG F J, et al.Audio Data-Driven Detection of Chute Blockages in Coal Preparation Plants[J]. Coal Engineering, 2024, 56(10): 224-230.
[8] BORTNOWSKI P, GONDEK H, KRÓL R, et al. Detection of Blockages of the Belt Conveyor Transfer Point Using an RGB Camera and CNN Autoencoder[J]. Energies, 2023, 16(4): 1666.
[9] KUKREJA K, SONI M K, NAINEGALI M S, et al.Development of Transfer Chute Design through Discrete Element Modelling for Using Refused Derived Fuel in Indian Cement Plants[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102567.
[10] 叶茵, 赵巧琳, 关斌, 等. 不同卷烟综合测试台对卷烟物理指标检测结果的影响[J]. 农产品加工, 2021(10): 47-49.
YE Y, ZHAO Q L, GUAN B, et al.Influence of Different Cigarette Comprehensive Test Stations on the Results of Cigarette Physical Indexes[J]. Farm Products Processing, 2021(10): 47-49.
[11] 吴志英, 李力, 李东亮, 等. 卷烟单支重量、吸阻、通风率与感官质量的关系分析[J]. 中国烟草科学, 2010, 31(2): 49-53.
WU Z Y, LI L, LI D L, et al.Correlation Analysis between Cigarette Weight, Draw Resistance, Ventilation Rate and Sensory Evaluation of Cigarette[J]. Chinese Tobacco Science, 2010, 31(2): 49-53.
[12] 潘广乐, 张二强, 巩佳豪, 等. 烟支规格对卷烟物理、烟气、燃吸特性及感官质量的影响[J]. 烟草科技, 2022, 55(1): 91-98.
PAN G L, ZHANG E Q, GONG J H, et al.Effects of Cigarette Size on Its Physical Indexes, Smoke Constituent Indexes, Puffing Characteristics and Sensory Quality[J]. Tobacco Science & Technology, 2022, 55(1): 91-98.
[13] 刘永宾, 刘伟华, 栾稳, 等. ZB45硬盒包装机组烟支自动平整装置研制[J]. 机械设计, 2024, 41(4): 147-152.
LIU Y B, LIU W H, LUAN W, et al.Automatic Cigarette Leveling Device of ZB45 Packaging Machine[J]. Journal of Machine Design, 2024, 41(4): 147-152.
[14] 刘仁瑞, 戴团结, 马存国, 等. FY117型废烟支处理机排序装置的改进[J]. 烟草科技, 2024, 57(1): 98-103.
LIU R R, DAI T J, MA C G, et al.Modification of Collation Device in FY117 Waste Cigarette Processor[J]. Tobacco Science & Technology, 2024, 57(1): 98-103.
[15] SUNARNO A D, HARYADI G D, ROZI K, et al.Analysis of Modified Conveyor Skirt Board Geometry and Their Effects on Dust Generation Prediction[C]//2023 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP). Jakarta: IEEE, 2023: 145-149.
[16] ZHOU K, JIANG Z H, PAN D, et al.Influence of Charging Parameters on the Burden Flow Velocity and Distribution on the Blast Furnace Chute Based on Discrete Element Method[J]. Steel Research International, 2022, 93(1): 2270011.
[17] JING X D, LI C.Dynamic Modeling and Solution of 6-DOF Parallel Mechanism[J]. IEEE Access, 2022, 10: 33695-33703.
[18] POPOV V L.Contact Mechanics and Friction. Physical Principles and Applications[M]. 2nd Edition. Berlin-Heidelberg: Springer, 2017: 57-81.
[19] 方鑫, 汤达伟, 陈哲吾, 等. 常规滤嘴卷烟力学特征参数的测定[J]. 烟草科技, 2021, 54(6): 92-100.
FANG X, TANG D W, CHEN Z W, et al.Determination of Mechanical Characteristic Parameters of Conventional Filter Cigarettes[J]. Tobacco Science & Technology, 2021, 54(6): 92-100.
基金
中国烟草总公司重点研发项目(110202202042)