木质纤维素材料在可持续包装中的研究进展

张政委, 曹吏轲, 冯梦真, 刘正源, 袁方洋, 黄舒婷

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (15) : 62-71.

PDF(9453 KB)
PDF(9453 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (15) : 62-71. DOI: 10.19554/j.cnki.1001-3563.2025.15.007
可持续包装技术创新与产业发展

木质纤维素材料在可持续包装中的研究进展

  • 张政委1, 曹吏轲1, 冯梦真1, 刘正源2, 袁方洋1,3, 黄舒婷1,3*
作者信息 +

Recent Developments and Prospective Packaging-related Applications of Lignocellulose

  • ZHANG Zhengwei1, CAO Like1, FENG Mengzhen1, LIU Zhengyuan2, YUAN Fangyang1,3, HUANG Shuting1,3*
Author information +
文章历史 +

摘要

综述了近年来木质纤维素材料在可持续包装中的研究进展,系统分析了不同来源的木质纤维素在包装材料开发中的优势与技术瓶颈。从原料来源、提取技术、改性方法及应用方向4个维度,对木质纤维素材料在可持续包装中的研究现状与发展趋势进行了综述与评析。不同植物种类及工业副产物来源的木质纤维素在纤维素、半纤维素和木质素组分含量与结构特性方面差异显著,对其提取效率和改性效果产生了重要影响。当前木质纤维素的提取与改性技术逐渐趋向绿色、高效,初步实现了材料在力学增强、阻隔性提升、抗菌抗氧化等方面的应用,但仍面临工艺标准化不足、材料稳定性和安全性有待进一步提升等问题。木质纤维素在包装领域展现出巨大的应用潜力,未来研究应聚焦于标准化提取与改性工艺、原料优选、结构精准调控及规模化应用技术的开发,以推动其商业化和产业化进程。

Abstract

This review summarizes recent advances in lignocellulose materials for sustainable packaging, systematically analyzing the advantages and technological bottlenecks associated with different raw material sources in the development of packaging materials. From four dimensions of raw material sources, extraction technologies, modification methods, and application directions, the current research status and development trends of lignocellulose-based packaging materials are reviewed and evaluated. Lignocellulose derived from various plant species and industrial by-products exhibits significant variability in the composition and structure of cellulose, hemicellulose, and lignin, which strongly influences extraction efficiency and modification performance. Current extraction and modification technologies are progressively moving toward more environmental and efficient approaches, with promising progress achieved in mechanical reinforcement, barrier enhancement, and antimicrobial and antioxidant functionalities. Nevertheless, challenges remain, including the lack of standardized processes and the need to further improve the stability and safety of these materials. Given the immense potential of lignocellulose in the packaging field, future research should focus on the development of standardized extraction and modification protocols, careful selection of optimal feedstocks, precise control of structural characteristics, and scalable application technologies to accelerate commercialization and industrial adoption.

关键词

木质纤维素 / 生物降解包装材料 / 提取工艺 / 改性方法

Key words

lignocellulose / biodegradable packaging materials / extraction process / modification methods

引用本文

导出引用
张政委, 曹吏轲, 冯梦真, 刘正源, 袁方洋, 黄舒婷. 木质纤维素材料在可持续包装中的研究进展[J]. 包装工程(技术栏目). 2025, 46(15): 62-71 https://doi.org/10.19554/j.cnki.1001-3563.2025.15.007
ZHANG Zhengwei, CAO Like, FENG Mengzhen, LIU Zhengyuan, YUAN Fangyang, HUANG Shuting. Recent Developments and Prospective Packaging-related Applications of Lignocellulose[J]. Packaging Engineering. 2025, 46(15): 62-71 https://doi.org/10.19554/j.cnki.1001-3563.2025.15.007
中图分类号: TB48    TB34   

参考文献

[1] 张丽平, 谢同, 高永平. 生物可降解塑料行业发展现状、存在问题与建议[J]. 中国塑料, 2025, 39(4): 75-83.
ZHANG L P, XIE T, GAO Y P. Development Situation, Problems and Suggestions of Biodegradable Plastic Industry[J]. China Plastics, 2025, 39(4): 75-83.
[2] 田强运, 裴树昆, 马晓军, 等. 生物降解包装材料聚羟基脂肪酸酯的工艺研究进展[J]. 包装工程, 2023, 44(7): 63-75.
TIAN Q Y, PEI S K, MA X J, et al.Research Progress on Production Process of Polyhydroxyalkanoates as Biodegradable Packaging Material[J]. Packaging Engineering, 2023, 44(7): 63-75.
[3] 陈倩茜, 常春雨. 纤维素纳米纤维在食品包装领域的研究进展[J]. 包装工程, 2022, 43(23): 1-8.
CHEN Q Q, CHANG C Y.Research Progress of Cellulose Nanofibers in Food Packaging[J]. Packaging Engineering, 2022, 43(23): 1-8.
[4] 翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174.
ZHAI X H, LI X, YUAN Y J.Research Progress of Lignocellulose Pretreatment and Valorization Method[J]. Biotechnology Bulletin, 2021, 37(3): 162-174.
[5] 班唱唱, 曹玉连, 计磊, 等. 木质纤维素: 生产可再生单体和聚合物的绿色平台[J]. 生物加工过程, 2025, 23(1): 10-22.
BAN C C, CAO Y L, JI L, et al.Lignocellulose: A Green Platform for Synthesizing Renewable Monomers and Polymers[J]. Chinese Journal of Bioprocess Engineering, 2025, 23(1): 10-22.
[6] JATOI A S, ALI ABBASI S, HASHMI Z, et al.Recent Trends and Future Perspectives of Lignocellulose Biomass for Biofuel Production: A Comprehensive Review[J]. Biomass Conversion and Biorefinery, 2023, 13(8): 6457-6469.
[7] ZHANG Y, WANG H L, SUN X D, et al.Separation and Characterization of Biomass Components (Cellulose, Hemicellulose, and Lignin) from Corn Stalk[J]. BioResources, 2021, 16(4): 7205-7219.
[8] HUANG Y M, XU Y, ZHU Y L, et al.Improved Glucose Yield and Concentration of Sugarcane Bagasse by the Pretreatment with Ternary Deep Eutectic Solvents and Recovery of the Pretreated Liquid[J]. Bioresource Technology, 2022, 366: 128186.
[9] JACQUELINE P J, VELVIZHI G.Substantial Physicochemical Pretreatment and Rapid Delignification of Lignocellulosic Banana, Pineapple and Papaya Fruit Peels: A Study on Physical-Chemical Characterization[J]. Sustainable Chemistry and Pharmacy, 2024, 37: 101347.
[10] REVATHI V, BORA S, AFZIA N, et al.Orange Peel Composition, Biopolymer Extraction, and Applications in Paper and Packaging Sector: A Review[J]. Sustainable Chemistry and Pharmacy, 2025, 43: 101908.
[11] DJIKANOVIĆ D, DEVEČERSKI A, STEINBACH G, et al. Comparison of Macromolecular Interactions in the Cell Walls of Hardwood, Softwood and Maize by Fluorescence and FTIR Spectroscopy, Differential Polarization Laser Scanning Microscopy and X-Ray Diffraction[J]. Wood Science and Technology, 2016, 50(3): 547-566.
[12] SANCHEZ-SALVADOR J L, CAMPANO C, BALEA A, et al. Critical Comparison of the Properties of Cellulose Nanofibers Produced from Softwood and Hardwood through Enzymatic, Chemical and Mechanical Processes[J]. International Journal of Biological Macromolecules, 2022, 205: 220-230.
[13] KRUYENISKI J, FERREIRA P J T, DA GRAÇA VIDEIRA SOUSA CARVALHO M, et al. Physical and Chemical Characteristics of Pretreated Slash Pine Sawdust Influence Its Enzymatic Hydrolysis[J]. Industrial Crops and Products, 2019, 130: 528-536.
[14] WANG J W, MINAMI E, KAWAMOTO H.Thermal Reactivity of Hemicellulose and Cellulose in Cedar and Beech Wood Cell Walls[J]. Journal of Wood Science, 2020, 66(1): 41.
[15] DASH S, BHAVANAM A, GERA P.Parametric Optimization of Kraft Pulping of Wheat Straw for Extraction of Lignin Using Response Surface Methodology[J]. Biomass Conversion and Biorefinery, 2024, 14(15): 18165-18182.
[16] ABOLORE R S, JAISWAL S, JAISWAL A K.Green and Sustainable Pretreatment Methods for Cellulose Extraction from Lignocellulosic Biomass and Its Applications: A Review[J]. Carbohydrate Polymer Technologies and Applications, 2024, 7: 100396.
[17] PHAM L T M, CHOUDHARY H, GAUTTAM R, et al. Revisiting Theoretical Tools and Approaches for the Valorization of Recalcitrant Lignocellulosic Biomass to Value-Added Chemicals[J]. Frontiers in Energy Research, 2022, 10: 863153.
[18] COPENHAVER K, LI K, WANG L, et al.Pretreatment of Lignocellulosic Feedstocks for Cellulose Nanofibril Production[J]. Cellulose, 2022, 29(9): 4835-4876.
[19] MANIAN A P, CORDIN M, PHAM T.Extraction of Cellulose Fibers from Flax and Hemp: A Review[J]. Cellulose, 2021, 28(13): 8275-8294.
[20] VARGHESE R T, CHERIAN R M, ANTONY T, et al.Thermally Stable, Highly Crystalline Cellulose Nanofibrils Isolated from the Lignocellulosic Biomass of G. Tiliifolia Plant Barks by a Facile Mild Organic Acid Hydrolysis[J]. Biomass Conversion and Biorefinery, 2024, 14(24): 31591-31605.
[21] SCHNEIDER D H, DOSKALIUK D N, BUCHNER E, et al.Reactive Eutectic Media for Lignocellulosic Biomass Fractionation[J]. ChemSusChem, 2024, 17(16): e202301780.
[22] JANČÍKOVÁ V, JABLONSKÝ M. Cellulose Nanoproducts Isolated from Lignocellulosic Materials Using DES-Like Mixtures-A Minireview: State-of-the-Art 2023[J]. Journal of Molecular Liquids, 2024, 394: 123645.
[23] LU Y C, HE Q, FAN G Z, et al.Extraction and Modification of Hemicellulose from Lignocellulosic Biomass: A Review[J]. Green Processing and Synthesis, 2021, 10(1): 779-804.
[24] ZHOU J M, DU X J, ZHOU S L, et al.Selectively Isolated Hemicellulose with High Whiteness and Molecular Weight from Poplar by Sodium Perborate-Assisted Alkali Extraction[J]. Cellulose, 2023, 30(8): 4855-4871.
[25] LI J, LIU Z M, FENG C Q, et al.Green, Efficient Extraction of Bamboo Hemicellulose Using Freeze-Thaw Assisted Alkali Treatment[J]. Bioresource Technology, 2021, 333: 125107.
[26] TIAN R, ZHU B L, LI N, et al.Tetrapropylammonium Hydroxide Extraction Method for Fractionating Hemicelluloses and Upgrading the Properties of Cellulose[J]. Industrial Crops and Products, 2024, 218: 118891.
[27] RAÏSSA K R, DURO D K, BADZA K, et al. Microwave-Assisted Extraction Improves the Recovery of Cellulose and Hemicellulose from Triplochiton Scleroxylon (Ayous) Sawdust[J]. Chemical Papers, 2025, 79(3): 1903-1914.
[28] SAINI S, KUMAR N, DUDI K, et al.Alkali-Based Lignin Extraction from Lignocellulosic Material and Upgradation of Residual Pulp as Bio-Packaging Material towards Sustainable Biomass Utilization[J]. Bioresource Technology Reports, 2024, 26: 101853.
[29] YONG K J, WU T Y.Recent Advances in the Application of Alcohols in Extracting Lignin with Preserved Β-O-4 Content from Lignocellulosic Biomass[J]. Bioresource Technology, 2023, 384: 129238.
[30] FERNANDES C, MELRO E, MAGALHÃES S, et al. New Deep Eutectic Solvent Assisted Extraction of Highly Pure Lignin from Maritime Pine Sawdust (Pinus Pinaster Ait.)[J]. International Journal of Biological Macromolecules, 2021, 177: 294-305.
[31] ZHANG M, TIAN R B, TANG S Y, et al.The Structure and Properties of Lignin Isolated from Various Lignocellulosic Biomass by Different Treatment Processes[J]. International Journal of Biological Macromolecules, 2023, 243: 125219.
[32] KAUR H, GOYAL D.Lignin Extraction from Lignocellulosic Biomass and Its Valorization to Therapeutic Phenolic Compounds[J]. Journal of Environmental Management, 2024, 372: 123334.
[33] ZHANG Y D, DENG W F, WU M Y, et al.Tailoring Functionality of Nanocellulose: Current Status and Critical Challenges[J]. Nanomaterials, 2023, 13(9): 1489.
[34] BARAKA F, ROBLES E, LABIDI J.Microwave-Assisted Esterification of Bleached and Unbleached Cellulose Nanofibers[J]. Industrial Crops and Products, 2023, 191: 115970.
[35] RODRÍGUEZ-FABIÀ S, TORSTENSEN J, JOHANSSON L, et al. Hydrophobization of Lignocellulosic Materials Part II: Chemical Modification[J]. Cellulose, 2022, 29(17): 8957-8995.
[36] DHALI K, DAVER F, CASS P, et al.Surface Modification of the Cellulose Nanocrystals through Vinyl Silane Grafting[J]. International Journal of Biological Macromolecules, 2022, 200: 397-408.
[37] GODINHO D, DE OLIVEIRA ARAÚJO S, QUILHÓ T, et al. Thermally Modified Wood Exposed to Different Weathering Conditions: A Review[J]. Forests, 2021, 12(10): 1400.
[38] RODRÍGUEZ-FABIÀ S, TORSTENSEN J, JOHANSSON L, et al. Hydrophobisation of Lignocellulosic Materials Part I: Physical Modification[J]. Cellulose, 2022, 29(10): 5375-5393.
[39] DE ARAÚJO L G S, RODRIGUES T H S, RATES E R D, et al. Production of Cellulose Nanoparticles from Cashew Apple Bagasse by Sequential Enzymatic Hydrolysis with an Ultrasonic Process and Its Application in Biofilm Packaging[J]. ACS Omega, 2024, 9(51): 50671-50684.
[40] LEE E A, HAN S Y, KWON G J, et al.Preparation and Characterization of Cellulose Nanofibrils fromLignocellulose Using a Deep Eutectic Solvent Followed by EnzymaticTreatment[J]. Journal of the Korean Wood Science and Technology, 2022, 50(6): 436-447.
[41] BASCÓN-VILLEGAS I, SÁNCHEZ-GUTIÉRREZ M, PÉREZ-RODRÍGUEZ F, et al. Lignocellulose Nanofibre Obtained from Agricultural Wastes of Tomato, Pepper and Eggplants Improves the Performance of Films of Polyvinyl Alcohol (PVA) for Food Packaging[J]. Foods, 2021, 10(12): 3043.
[42] 方碧瑶, 邱健豪, 李伊馨, 等. 木质纤维素基生物质炭改性半导体及其光催化应用[J]. 化工进展, 2025, 44(2): 957-970.
FANG B Y, QIU J H, LI Y X, et al.Lignocellulose-Derived Biochar-Modified Semiconductors and Their Photocatalytic Applications[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 957-970.
[43] YANG W J, QI G C, KENNY J M, et al.Effect of Cellulose Nanocrystals and Lignin Nanoparticles on Mechanical, Antioxidant and Water Vapour Barrier Properties of Glutaraldehyde Crosslinked PVA Films[J]. Polymers, 2020, 12(6): 1364.
[44] ZHANG W, GAO P, JIANG Q X, et al.Green Fabrication of Lignin Nanoparticles/Chitosan Films for Refrigerated Fish Preservation Application[J]. Food Hydrocolloids, 2023, 139: 108548.
[45] TRIFOL J, MORIANA R.Barrier Packaging Solutions from Residual Biomass: Synergetic Properties of CNF and LCNF in Films[J]. Industrial Crops and Products, 2022, 177: 114493.
[46] DOU J Z, VUORINEN T, KOIVULA H, et al.Self-Standing Lignin-Containing Willow Bark Nanocellulose Films for Oxygen Blocking and UV Shielding[J]. ACS Applied Nano Materials, 2021, 4(3): 2921-2929.
[47] XU K M, LI Q S, XIE L K, et al.Novel Flexible, Strong, Thermal-Stable, and High-Barrier Switchgrass-Based Lignin-Containing Cellulose Nanofibrils/Chitosan Biocomposites for Food Packaging[J]. Industrial Crops and Products, 2022, 179: 114661.
[48] CHEN H, LIU T, LI Y, et al.A Strong, Hydrostable Lignocellulose-Based Film Based on Dual Cross-Linking Networks[J]. Industrial Crops and Products, 2023, 202: 117025.
[49] ZOU Z P, ISMAIL B B, ZHANG X H, et al.Improving Barrier and Antibacterial Properties of Chitosan Composite Films by Incorporating Lignin Nanoparticles and Acylated Soy Protein Isolate Nanogel[J]. Food Hydrocolloids, 2023, 134: 108091.
[50] ZHANG S K, CHENG X X, FU Q B, et al.Pectin-Nanolignin Composite Films with Water Resistance, UV Resistance, and Antibacterial Activity[J]. Food Hydrocolloids, 2023, 143: 108783.
[51] SUN Y S, LI Q W, DU X W, et al.Lignin-Containing Nanocellulose for in Situ Chemical-Free Synthesis of AgAu-Based Nanoparticles with Potent Antibacterial Activities[J]. ACS Omega, 2022, 7(45): 41548-41558.
[52] BASBASAN A J, HARARAK B, WINOTAPUN C, et al.Lignin Nanoparticles for Enhancing Physicochemical and Antimicrobial Properties of Polybutylene Succinate/Thymol Composite Film for Active Packaging[J]. Polymers, 2023, 15(4): 989.
[53] MIAO Z Y, YANG M C, ABDALKARIM S Y H, et al. In Situ Growth of Curcumin-Loaded Cellulose Composite Film for Real-Time Monitoring of Food Freshness in Smart Packaging[J]. International Journal of Biological Macromolecules, 2024, 279: 135090.
[54] WANG H M, YUAN T Q, SONG G Y, et al.Advanced and Versatile Lignin-Derived Biodegradable Composite Film Materials Toward a Sustainable World[J]. Green Chemistry, 2021, 23(11): 3790-3817.
[55] CHEN Y A, LI Y H, QIN S L, et al.Antimicrobial, UV Blocking, Water-Resistant and Degradable Coatings and Packaging Films Based on Wheat Gluten and Lignocellulose for Food Preservation[J]. Composites Part B: Engineering, 2022, 238: 109868.
[56] LI Y J, CHEN Y F, WU Q, et al.Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers[J]. Polymers, 2022, 14(9): 1705.

基金

国家自然科学基金(12172152); 江苏省食品先进制造装备技术重点实验室课题(FMZ202306); 无锡市“太湖之光”科技攻关(基础研究)(K20231020); 中央高校基本科研计划(JUSPR124012)

PDF(9453 KB)

Accesses

Citation

Detail

段落导航
相关文章

/