目的 利用双向拉伸力场调控环境友好聚乙烯醇(PVA)的微观结构,制备高阻隔双向拉伸PVA(BOPVA)包装薄膜,研究BOPVA薄膜的微观结构及力学、光学、阻隔和耐水性能,探讨其应用可行性。方法 结合分子复合改性技术实现PVA的热塑加工,利用双向拉伸设备提供合适的温度场和应力场,制备不同拉伸倍率的BOPVA薄膜,表征其结晶结构与取向行为,测试其拉伸、撕裂和穿刺强度以及透明度、氧气渗透系数(PO2)和水溶性。结果 双向拉伸力场可诱导PVA结晶,随拉伸倍率增加,BOPVA内部晶体与分子链沿面内方向取向,熔点和结晶度提高,晶体尺寸增大;双向拉伸极大提高了PVA薄膜的拉伸强度和抗穿刺性能,拉伸3×3倍后,拉伸强度和穿刺强度分别达146.4 MPa和357.9 N/mm;BOPVA薄膜透明性和耐水性均优于未拉伸样品,600 nm波长处的透光率达88.3%,在水中浸泡1 h质量损失率低至4.4%;双向拉伸后,PVA自由体积下降,氧气阻隔性提升,薄膜的PO2低至4.48×10-15 m3·cm·m-2·s-1·Pa-1。以市售EVOH/PA/PE五层共挤出复合膜作为参比,阻隔改善因子(BIF)达34.1。结论 双向拉伸可有效提高PVA的阻隔性和耐水性,促进环境友好PVA薄膜在阻隔包装领域的应用。
Abstract
The work aims to regulate the microstructure of poly(vinyl alcohol) (PVA) through biaxial stretching to prepare high-barrier biaxially stretched PVA (BOPVA) packaging films and investigate their microstructure as well as mechanical, optical, barrier and water-resistant properties while discussing their usability. BOPVA films with different stretching ratios were prepared by adopting molecular complexation technology to achieve the thermal processing of PVA and utilizing a biaxial stretching machine to provide appropriate temperature and stress fields. The crystalline structure and orientation behavior of the films were characterized and their tensile, tear and puncture strengths as well as light transparency, oxygen permeability coefficient (PO2) and water solubility were tested. The biaxial stretching could induce the orientation of crystals and molecular chains within PVA along the in-plane direction, and with the increase of stretching ratio, the melting point, degree of crystallinity and crystal size of PVA gradually increased. Biaxial stretching enhanced tensile strength and puncture resistance of PVA films. Upon 3×3 stretching, the tensile strength and puncture strength of BOPVA films reached 146.4 MPa and 357.9 N/mm respectively. BOPVA films exhibited superior transparency and water resistance, with a light transmittance of 88.3% at a wavelength of 600 nm and a weight loss rate of only 4.4% after immersion in water for 1 h. After biaxial stretching, the free volume of PVA decreased, and as a result, the oxygen barrier properties of the film were improved, with the oxygen permeability coefficient (PO2) dropping to 4.48×10-15 m3·cm·m-2·s-1·Pa-1. With a commercially available EVOH/PA/PE five-layer co-extruded composite film as a reference, the barrier improvement factor (BIF) of BOPVA films reached up to 34.1. Biaxial stretching can effectively improve the barrier properties and water resistance of PVA, promoting the application of environmentally friendly PVA films in barrier packaging.
关键词
聚乙烯醇 /
双向拉伸 /
氧气阻隔 /
包装薄膜 /
结构与性能
Key words
poly(vinyl alcohol) /
biaxial stretching /
oxygen barrier /
packaging film /
structure and properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FITRIANI F, BILAD M R, APRILIA S, et al.Biodegradable Hybrid Polymer Film for Packaging: A Review[J]. Journal of Natural Fibers, 2023, 20(1): 2159606.
[2] IDRIS A, MUNTEAN A, MESIC B.A Review on Predictive Tortuosity Models for Composite Films in Gas Barrier Applications[J]. Journal of Coatings Technology and Research, 2022, 19(3): 699-716.
[3] LYUBIMOVA O N, MORKOVIN A V, BARBOTKO M V.Properties, Macro-and Microstructure of a Layered Structural Element Based on Inorganic Glass and a Steel—Glass-and-Metal Composite Rod[J]. Metallurgist, 2023, 66(9): 1140-1146.
[4] HUBBE M A.Contributions of Polyelectrolyte Complexes and Ionic Bonding to Performance of Barrier Films for Packaging: A Review[J]. BioResources, 2021, 16(2): 4544-4605.
[5] PATEL J, SONAR C R, AL-GHAMDI S, et al.Influence of Ultra-High Barrier Packaging on the Shelf-Life of Microwave-Assisted Thermally Sterilized Chicken Pasta[J]. LWT, 2021, 136: 110287.
[6] KODEN M, SUGIMOTO M, KAWAMURA N, et al.Novel Flexible Films with High Gas Barrier Layers by Sputtering and ALD[C]//2021 28th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). Kyoto, Japan. IEEE, 2021: 125-128.
[7] 魏冀璇, 赵春霞, 王智萱, 等. 聚乙烯醇气凝胶研究进展[J]. 化工新型材料, 2022, 50(1): 248-251.
WEI J X, ZHAO C X, WANG Z X, et al.Research Progress on PVA Aerogel[J]. New Chemical Materials, 2022, 50(1): 248-251.
[8] 李凤红, 李鹏珍, 师岩, 等. 聚乙烯醇薄膜改性及应用进展[J]. 塑料, 2021, 50(6): 57-62.
LI F H, LI P Z, SHI Y, et al.Modification and Application Progress of Polyvinyl Alcohol Film[J]. Plastics, 2021, 50(6): 57-62.
[9] GU F, YANG W J, SONG J L, et al.Crosslinked PVA/Nanoclay Hydrogel Coating for Improving Water Vapor Barrier of Cellulose-Based Packaging at High Temperature and Humidity[J]. Coatings, 2022, 12(10): 1562.
[10] 崔青青. 聚乙烯醇/层状纳米颗粒高阻隔复合涂料的制备和表征[D]. 福州: 福建师范大学, 2018: 78.
CUI Q Q.Preparation and Characterization of Polyvinyl Alcohol/Layered Nanoparticles High Barrier Composite Coatings[D]. Fuzhou: Fujian Normal University, 2018: 78.
[11] LIU C, DONG A J, ZHANG J H.Research Progress of Modified Polyvinyl Alcohol Membrane[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 1-10.
[12] KIM H, PANDA P K, SADEGHI K, et al.Poly(Vinyl Alcohol)/Hydrothermally Treated Tannic Acid Composite Films as Sustainable Antioxidant and Barrier Packaging Materials[J]. Progress in Organic Coatings, 2023, 174: 107305.
[13] SAINI T, MEENA J, VERMA V, et al.Polyvinyl Alcohol: Recent Advances and Applications in Sustainable Materials[J]. Polymer-Plastics Technology and Materials, 2025, 64(6): 794-825.
[14] ZAMANIAN M, SADRNIA H, KHOJASTEHPOUR M, et al.Barrier Properties of PVA/TiO2/MMT Mixed-Matrix Membranes for Food Packaging[J]. Journal of Polymers and the Environment, 2021, 29(5): 1396-1411.
[15] ZENG J S, MA Y, LI P F, et al.Development of High-Barrier Composite Films for Sustainable Reduction of Non-Biodegradable Materials in Food Packaging Application[J]. Carbohydrate Polymers, 2024, 330: 121824.
[16] FLORY P J.Thermodynamics of Crystallization in High Polymers. I. Crystallization Induced by Stretching[J]. The Journal of Chemical Physics, 1947, 15(6): 397-408.
[17] ZENG S L, LI L, WANG Q.Structure-Property Correlation of Polyvinyl Alcohol Films Fabricated by Different Processing Methods[J]. Polymer Testing, 2023, 126: 108143.
[18] KATOCH M, PAL N.Prediction of Optical Transmittance Loss in Solar Panels Using Lambert-Beer Law[C]//2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE). NOIDA, India. IEEE, 2019: 357-361.
[19] LIU X C, MO Z X, CUI L N, et al.Effect of Biaxial Stretching on the Microstructure Evolution, Optical, Mechanical and Oxygen Barrier Properties of Biodegradable Poly(Lactic Acid) (PLA)/Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Films[J]. International Journal of Biological Macromolecules, 2023, 253: 126976.
[20] DLUBEK G.Local Free-volume Distribution from PALS and Dynamics of Polymers[M]. Hoboken: Polymer Physics, 2010: 421-472.
[21] SHARMA S K, PUJARI P K.Role of Free Volume Characteristics of Polymer Matrix in Bulk Physical Properties of Polymer Nanocomposites: A Review of Positron Annihilation Lifetime Studies[J]. Progress in Polymer Science, 2017, 75: 31-47.
基金
国家自然科学基金(U21A2091); 天府永兴实验室科技攻关任务重点项目(2023KJGG12)