Abstract
The work aims to study the influence of entrapped air on its out-of-plane impact properties with the hexagonal honeycomb paperboard as the object. The influences of entrapped air on contact force, maximum contact force, maximum displacement, maximum strain and absorption energy were analyzed through the dynamic impact experiment. Meanwhile, the contact force vs. time curve, the maximum contact force, the maximum displacement, the maximum strain, the absorption energy vs. impact energy curves, respectively, and the absorption energy vs. the percentage of holes curve for honeycomb paperboard were obtained for the different percentages of holes. For the specified impact energy, the maximum contact force and absorption energy decreased and the maximum displacement and maximum strain increased as the percentage of holes increased; for the given percentage of holes, the maximum contact force, maximum displacement and maximum strain as well as the maximum absorption energy linearly increased just as the impact energy increased. In addition, the higher the impact energy, the shorter time the contact force took to reach its peak value and the longer the contact duration. In the dynamic impact experiment, the ability of absorbing impact energy of honeycomb paperboard is obviously enhanced by the entrapped air, and for the given impact energy of honeycomb paperboard, it is concluded that the honeycomb paperboard will readily tend to be compressed and deformed and the absorption energy will be less as the percentage of holes increases.
Cite this article
Download Citations
ZHANG Jing-jing, CHEN Man-ru, SUN De-qiang.
Influence of Entrapped Air upon Out-of-plane Dynamic Impact Properties of Honeycomb Paperboard[J]. Packaging Engineering. 2018(1): 30-34
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}