Functional Applications of Silica in Biodegradable Packaging Materials

BAO Yan, DONG Wenli, GUO Ruyue, YU Sike, CHEN Lihua

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (23) : 113-128.

PDF(11071 KB)
PDF(11071 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (23) : 113-128. DOI: 10.19554/j.cnki.1001-3563.2025.23.012
Advanced Materials

Functional Applications of Silica in Biodegradable Packaging Materials

  • BAO Yan1,*, DONG Wenli1, GUO Ruyue1, YU Sike1, CHEN Lihua2
Author information +
History +

Abstract

To address the bottlenecks of insufficient mechanical and barrier properties, as well as limited functionality, in biodegradable packaging materials, the work aims to systematically summarize recent research progress on the functional modification of these materials through the incorporation of abundant, low-toxicity, and structurally tunable silica (SiO2) microspheres, with the goal of enhancing their performance and broadening their applications. Firstly, the structural characteristics and common preparation methods of solid SiO2 microspheres, mesoporous SiO2 nanoparticles, and hollow mesoporous SiO2 nanoparticles were summarized. Secondly, the regulatory mechanisms of SiO2 on the mechanical strength, barrier properties, thermal stability, optical performance, and biodegradability of degradable packaging materials were elaborated. Furthermore, the loading and controlled release of SiO2 on active substances were analyzed. To sum up, the preparation methods for SiO2 microspheres have become increasingly well-established. As a functional filler, SiO2 can address the needs of biodegradable packaging materials in terms of mechanical strength enhancement, barrier property improvement, and thermal stability enhancement by tailoring its structure and properties. The ability of SiO2 microspheres to load and controllably release active substances endows them with significant application potential in active packaging, intelligent indicator packaging, anti-counterfeiting packaging, and thermal insulation protective packaging. Future research should focus on four key aspects, including the long-term safety of SiO2 microspheres, green preparation processes, multifunctional synergy, and the use of machine learning to optimize material composition and structural design.

Key words

SiO2 / degradable packaging / nanocomposites / controlled release / active packaging

Cite this article

Download Citations
BAO Yan, DONG Wenli, GUO Ruyue, YU Sike, CHEN Lihua. Functional Applications of Silica in Biodegradable Packaging Materials[J]. Packaging Engineering. 2025, 46(23): 113-128 https://doi.org/10.19554/j.cnki.1001-3563.2025.23.012

References

[1] 张勇. 影响未来包装行业发展的十大创新趋势[J]. 印刷经理人, 2022(2): 29-30.
ZHANG Y.Ten Innovative Trends Affecting the Future Development of Packaging Industry[J]. Printing Manager, 2022(2): 29-30.
[2] 王徽, 邢鑫. 可降解包装材料的研究进展与发展趋势[J]. 包装工程, 2025, 46(S1): 25-30.
WANG H, XING X.Research Progress and Development Trend of Degradable Packaging Materials[J]. Packaging Engineering, 2025, 46(S1): 25-30.
[3] 江天宇, 王晓娟. 可生物降解纳米材料在食品包装中的研究进展[J]. 化工新型材料, 2024, 52(S1): 137-142.
JIANG T Y, WANG X J.Research Progress of Biodegradable Nanomaterials in Food Packaging[J]. New Chemical Materials, 2024, 52(S1): 137-142.
[4] 张瑞娟. 生物降解包装材料的研究[J]. 丝网印刷, 2024, 42(11): 30-33.
ZHANG R J.Research on Biodegradable Packaging Materials[J]. Screen Printing, 2024, 42(11): 30-33.
[5] RAQUEZ J M, HABIBI Y, MURARIU M, et al.Polylactide (PLA)-Based Nanocomposites[J]. Progress in Polymer Science, 2013, 38(10/11): 1504-1542.
[6] POOJA N, CHAKRABORTY I, MAL S S, et al.Evaluation of Physicochemical Properties of Citric Acid Crosslinked Starch Elastomers Reinforced with Silicon Dioxide[J]. RSC Advances, 2024, 14(1): 139-146.
[7] 鲍艳, 王彤. 中空SiO2微球的制备及其在缓/控释应用中的新进展[J]. 无机材料学报, 2016, 31(12): 1269-1278.
BAO Y, WANG T.Recent Advances in Fabrication and Sustained/Controlled-Release Application of Hollow Silica Microspheres[J]. Journal of Inorganic Materials, 2016, 31(12): 1269-1278.
[8] ZHANG W L, AHARI H, ZHANG Z K, et al.Role of Silica (SiO2) Nano/Micro-Particles in the Functionality of Degradable Packaging Films/Coatings and Their Application in Food Preservation[J]. Trends in Food Science & Technology, 2023, 133: 75-86.
[9] TADANAGA K, MORITA K, MORI K, et al.Synthesis of Monodispersed Silica Nanoparticles with High Concentration by the Stöber Process[J]. Journal of Sol-Gel Science and Technology, 2013, 68(2): 341-345.
[10] HYUN L, JUNE L, WON J, et al.Antioxidative and Antiinflammatory Activities of Quercetin-Loaded Silica Nanoparticles[J]. Colloids and Surfaces B: Biointerfaces, 2016, 143: 511-517.
[11] MIKHAILOVA M S, MEDVEDEVA N A, VOZYAKOV A O.Production of Silicon Dioxide by the Sol-Gel Method and Control of Process Parameters[J]. Doklady Chemistry, 2024, 517(1): 124-130.
[12] 仝元东, 刘雨薇, 陈拥强, 等. 纳米SiO2微球的制备及其结构与性能研究[J]. 中国陶瓷, 2024, 60(2): 9-19.
TONG Y D, LIU Y W, CHEN Y Q, et al.Preparation of Nano-SiO2 Microspheres and Study on Their Structure and Properties[J]. China Ceramics, 2024, 60(2): 9-19.
[13] HAN Y D, LU Z Y, TENG Z G, et al.Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model[J]. Langmuir, 2017, 33(23): 5879-5890.
[14] VALLET-REGÍ M, SCHÜTH F, LOZANO D, et al. Engineering Mesoporous Silica Nanoparticles for Drug Delivery: Where Are we after Two Decades[J]. Chemical Society Reviews, 2022, 51(13): 5365-5451.
[15] LI M, XIAO J, CHEN L, et al.A Study of the Optimal Diffusion Distance of Ibuprofen through the Synthesis of Different Sizes of Mesoporous Silica[J]. Journal of Solid State Chemistry, 2023, 321: 123911.
[16] GEBRETATIOS A G, KADIRI KANAKKA PILLANTAKATH A R, WITOON T, et al. Rice Husk Waste into Various Template-Engineered Mesoporous Silica Materials for Different Applications: A Comprehensive Review on Recent Developments[J]. Chemosphere, 2023, 310: 136843.
[17] GEVARIYA D, PRIYA L, MEHTA S, et al.Bio-Functional Mesoporous Silica Nanoparticles as Nano-Structured Carriers in Cancer Theranostic Review on Recent Advancements[J]. Current Drug Targets, 2023, 24(12): 934-944.
[18] BRUCKNER J R, BAUHOF J, GEBHARDT J, et al.Mechanisms and Intermediates in the True Liquid Crystal Templating Synthesis of Mesoporous Silica Materials[J]. The Journal of Physical Chemistry B, 2021, 125(12): 3197-3207.
[19] JORGE M, MILNE A W, SOBEK O N, et al.Modelling the Self-Assembly of Silica-Based Mesoporous Materials[J]. Molecular Simulation, 2018, 44(6): 435-452.
[20] TANG F Q, LI L L, CHEN D.Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery[J]. Advanced Materials, 2012, 24(12): 1504-1534.
[21] 冯洋, 冉芹英, 杨佳环, 等. 中空二氧化硅微球的制备及应用研究进展[J]. 山东化工, 2022, 51(5): 100-103.
FENG Y, RAN Q Y, YANG J H, et al.Progress in Preparation and Application of Hollow Silica Microspheres[J]. Shandong Chemical Industry, 2022, 51(5): 100-103.
[22] 王超, 张丽, 李明雨, 等. 中空二氧化硅微球的制备及其在吸附领域的应用研究[J]. 山东化工, 2023, 52(10): 102-103.
WANG C, ZHANG L, LI M Y, et al.Preparation of Hollow Silica Microspheres and Its Application in Adsorption Field[J]. Shandong Chemical Industry, 2023, 52(10): 102-103.
[23] 吴蒙, 刘亚明, 孟家光. 中空二氧化硅微球的制备研究进展[J]. 有机硅材料, 2023, 37(6): 68-72.
WU M, LIU Y M, MENG J G.Research Progress in Preparation of Hollow Silica Microspheres[J]. Silicone Material, 2023, 37(6): 68-72.
[24] SRIRAM G, KIGGA M, UTHAPPA U T, et al.Naturally Available Diatomite and Their Surface Modification for the Removal of Hazardous Dye and Metal Ions: A Review[J]. Advances in Colloid and Interface Science, 2020, 282: 102198.
[25] YANG J, ZHOU Z L, LU P, et al.Leaf Porous Structure Inspired Packaging Film for Fruits Preservation and Monitoring CO2 Concentration of Package[J]. Chemical Engineering Journal, 2023, 464: 142660.
[26] LU J Y, LI T, MA L, et al.Optimization of Heat-Sealing Properties for Antimicrobial Soybean Protein Isolate Film Incorporating Diatomite/Thymol Complex and Its Application on Blueberry Packaging[J]. Food Packaging and Shelf Life, 2021, 29: 100690.
[27] LIAO J, WANG H, LIU N, et al.Functionally Modified Halloysite Nanotubes for Personalized Bioapplications[J]. Advances in Colloid and Interface Science, 2023, 311: 102812.
[28] GAIKWAD K K, SINGH S, LEE Y S.High Adsorption of Ethylene by Alkali-Treated Halloysite Nanotubes for Food-Packaging Applications[J]. Environmental Chemistry Letters, 2018, 16(3): 1055-1062.
[29] MAKAREMI M, PASBAKHSH P, CAVALLARO G, et al.Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17476-17488.
[30] YU F Y, WANG K, LI H, et al.Superhydrophobic and Ethylene Scavenging Paper Doped with Halloysite Nanotubes for Food Packaging Applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656: 130457.
[31] UZAY Ç.Investigation of Physical, Mechanical, and Thermal Properties of Glass Fiber Reinforced Polymer Composites Strengthened with KH550 and KH570 Silane-Coated Silicon Dioxide Nanoparticles[J]. Journal of Composite Materials, 2022, 56(19): 2995-3011.
[32] GRALA M, BARTCZAK Z, RÓŻAŃSKI A. Morphology, Thermal and Mechanical Properties of Polypropylene/SiO2 Nanocomposites Obtained by Reactive Blending[J]. Journal of Polymer Research, 2016, 23(2): 25.
[33] HASSANZADEH-AGHDAM M K, HASANZADEH M, ANSARI R. Elastoplastic Behavior of Unidirectional Hybrid Composites Containing SiO2 Nanoparticles under Transverse Tension[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2020, 44(2): 299-312.
[34] JIANG Y X, ZHAO G Y, YANG X L, et al.Preparation and Characterization of Nano-SiO2-Modified Emulsified Film and Its Application for Strawberry Preservation[J]. Food Packaging and Shelf Life, 2023, 40: 101181.
[35] PULIKKALPARAMBIL H, PHOTHISARATTANA D, PROMHUAD K, et al.Effect of Silicon Dioxide Nanoparticle on Microstructure, Mechanical and Barrier Properties of Biodegradable PBAT/PBS Food Packaging[J]. Food Bioscience, 2023, 55: 103023.
[36] KORESHKOV M, ANTREICH S J, BISMARCK A, et al.Sustainable Food Packaging Using Modified SiO2 Nanofillers in Biodegradable Polymers[J]. Materials Chemistry Frontiers, 2024, 8(16): 2754-2763.
[37] LYU Y, WEN X L, WANG G L, et al.3D Printing Nanocomposites with Controllable "Strength-Toughness" Transition: Modification of SiO2 and Construction of Stereocomplex Crystallites[J]. Composites Science and Technology, 2022, 218: 109167.
[38] ZHANG W, ZHOU W T, ZHANG Z S, et al.Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films[J]. Polymers, 2023, 15(19): 4015.
[39] DONG W X, SU J Q, CHEN Y L, et al.Characterization and Antioxidant Properties of Chitosan Film Incorporated with Modified Silica Nanoparticles as an Active Food Packaging[J]. Food Chemistry, 2022, 373: 131414.
[40] 刘锦渊, 刘晓丽, 夏文水. 负载丁香酚的改性纳米粒对玉米醇溶蛋白膜性能的影响[J]. 食品科学技术学报, 2023, 41(5): 123-135.
LIU J Y, LIU X L, XIA W S.Effects of Modified Nanoparticles Loaded with Eugenol on Properties of Zein Films[J]. Journal of Food Science and Technology, 2023, 41(5): 123-135.
[41] JIANG K, LU W W, ZHU B F, et al.Study on the Property of Mesoporous Silica Nanoparticles Loaded with Nisin for Poly(lactic acid)-Based Packaging Film[J]. Polymer Composites, 2023, 44(10): 6676-6690.
[42] KAEWPETCH T, JINKARN T, MUANGNAPOH T, et al.Influence of Micro- and Nanosized SiO2 Arrangement on Barrier Properties of Polylactic Acid Films[J]. Materials Today Communications, 2025, 45: 112317.
[43] ABUGU P N, SAMARA H, ROJAS A, et al.Enhanced Performance of Nanocomposite Membranes by an Environmentally Friendly High-Pressure Silanization Method[J]. ACS Omega, 2025, 10(9): 9484-9495.
[44] PHOTHISARATTANA D, HARNKARNSUJARIT N.Characterisations of Cassava Starch and Poly(butylene adipate-co-terephthalate) Blown Film with Silicon Dioxide Nanocomposites[J]. International Journal of Food Science & Technology, 2022, 57(8): 5078-5089.
[45] LIU Y Y, CAI Z X, SHENG L, et al.Influence of Nanosilica on Inner Structure and Performance of Chitosan Based Films[J]. Carbohydrate Polymers, 2019, 212: 421-429.
[46] AL-ASMAR A, GIOSAFATTO C V L, SABBAH M, et al. Effect of Mesoporous Silica Nanoparticles on the Physicochemical Properties of Pectin Packaging Material for Strawberry Wrapping[J]. Nanomaterials, 2020, 10(1): 52.
[47] JACOB J, ROBERT V, VALAPA R B, et al.Poly(lactic acid)/Polyethylenimine Functionalized Mesoporous Silica Biocomposite Films for Food Packaging[J]. ACS Applied Polymer Materials, 2022, 4(7): 4632-4642.
[48] ZHENG Y L, YAN K L, ZHAO Y L, et al.Preparation and Characterization of Poly(l-lactic acid)/Hollow Silica Nanospheres Nanocomposites[J]. Fibers and Polymers, 2016, 17(12): 2020-2026.
[49] WANG S Z, KWON Y K.Melt Rheology of Poly(l-lactic acid) Hybrids with Mesoporous Hollow Silica Nanospheres[J]. Journal of Polymers and the Environment, 2025, 33(7): 3467-3476.
[50] ZHANG W, LV Y Y, WEI S, et al.Cinnamaldehyde- and Nonanal-Incorporated Polyvinyl Alcohol/Colloidal Silicon Dioxide Films with Synergistic Antifungal Activities[J]. Food Packaging and Shelf Life, 2024, 45: 101344.
[51] GUO M Y, ZHANG G H, LU Y Q, et al.Preparation of Performance of Nanosilica-Loaded Fluorescent Yellowing Inhibitor in Paper Made from High-Yield Pulp[J]. BioResources, 2020, 15(4): 8784-8799.
[52] LV H X, SONG S X, SUN S L, et al.Enhanced Properties of Poly(lactic acid) with Silica Nanoparticles[J]. Polymers for Advanced Technologies, 2016, 27(9): 1156-1163.
[53] RAGHUWANSHI V S, VIR A B, LIN M Q, et al.From Transparent to Structural White: Modulating Nanoscale Self-Assembly in Silica and Nanocellulose Composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 131999.
[54] ZHANG K M, WANG M M, WU M Y, et al.One-Step Production of Amine-Functionalized Hollow Mesoporous Silica Microspheres via Phase Separation-Induced Cavity in Miniemulsion System for Opaque and Matting Coating[J]. Industrial & Engineering Chemistry Research, 2020, 59(2): 723-731.
[55] CHU L, ZHANG X T, NIU W B, et al.Hollow Silica Opals/Cellulose Acetate Nanocomposite Films with Structural Colors for Anti-Counterfeiting of Banknotes[J]. Journal of Materials Chemistry C, 2019, 7(24): 7411-7417.
[56] SINGH A K, ITKOR P, LEE M, et al.Advancing Sustainable Molded Packaging: Integrating Silica Aerogel into Recycled Paper Pulp for the Fabrication of Thermally and Mechanically Stable Superhydrophobic Composites[J]. Industrial Crops and Products, 2024, 222: 119649.
[57] MENG T T, ZHU L, STONE D, et al.Bioinspired Dry-Steam Superinsulation Straw Foam[J]. Small, 2025, 21(30): 2503511.
[58] OJHA N, DAS N.Fabrication and Characterization of Biodegradable PHBV/SiO2 Nanocomposite for Thermo-Mechanical and Antibacterial Applications in Food Packaging[J]. IET Nanobiotechnology, 2020, 14(9): 785-795.
[59] GRZĄBKA-ZASADZIŃSKA A, KLAPISZEWSKI Ł, BORYSIAK S, et al. Thermal and Mechanical Properties of Silica-Lignin/Polylactide Composites Subjected to Biodegradation[J]. Materials, 2018, 11(11): 2257.
[60] TEAMSINSUNGVON A, RUKSAKULPIWAT C, RUKSAKULPIWAT Y.Effects of Titanium-Silica Oxide on Degradation Behavior and Antimicrobial Activity of Poly(lactic acid) Composites[J]. Polymers, 2022, 14(16): 3310.
[61] AZAD M M, EJAZ M, SHAH A U R, et al. A Bio-Based Approach to Simultaneously Improve Flame Retardancy, Thermal Stability and Mechanical Properties of Nano-Silica Filled Jute/Thermoplastic Starch Composite[J]. Materials Chemistry and Physics, 2022, 289: 126485.
[62] JU J, CHEN X Q, XIE Y F, et al.Application of Essential Oil as a Sustained Release Preparation in Food Packaging[J]. Trends in Food Science & Technology, 2019, 92: 22-32.
[63] HOSSEN M A, SHIMUL I M, SAMEEN D E, et al.Essential Oil-Loaded Biopolymeric Particles on Food Industry and Packaging: A Review[J]. International Journal of Biological Macromolecules, 2024, 265: 130765.
[64] PAIDARI S, TAHERGORABI R, ANARI E S, et al.Migration of Various Nanoparticles into Food Samples: A Review[J]. Foods, 2021, 10(9): 2114.
[65] GAO F, ZHOU H J, SHEN Z C, et al.Synergistic Antimicrobial Activities of Tea Tree Oil Loaded on Mesoporous Silica Encapsulated by Polyethyleneimine[J]. Journal of Dispersion Science and Technology, 2020, 41(12): 1859-1871.
[66] WU C H, ZHU Y, WU T T, et al.Enhanced Functional Properties of Biopolymer Film Incorporated with Curcurmin-Loaded Mesoporous Silica Nanoparticles for Food Packaging[J]. Food Chemistry, 2019, 288: 139-145.
[67] BARROS C H N, DEVLIN H, HIEBNER D W, et al. Enhancing Curcumin’s Solubility and Antibiofilm Activity via Silica Surface Modification[J]. Nanoscale Advances, 2020, 2(4): 1694-1708.
[68] MICHAILIDIS M, SORZABAL-BELLIDO I, ADAMIDOU E A, et al.Modified Mesoporous Silica Nanoparticles with a Dual Synergetic Antibacterial Effect[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38364-38372.
[69] RUIZ-RICO M, SANCENÓN F, BARAT J M. Evaluation of the in Vitro and in Situ Antimicrobial Properties of Chitosan-Functionalised Silica Materials[J]. LWT, 2023, 173: 114373.
[70] WANG W, REN Z H, WANG L, et al.Nanoparticle-Stabilized Encapsulation of Borneol and Citral: Physicochemical Characteristics, Storage Stability, and Enhanced Antibacterial Activities[J]. Journal of Food Science, 2021, 86(10): 4554-4565.
[71] HU J, XU R Y, HU J, et al.Dual Stabilization of Pickering Emulsion with Epigallocatechin Gallate Loaded Mesoporous Silica Nanoparticles[J]. Food Chemistry, 2022, 396: 133675.
[72] ZHONG X M, GAO F, WEI H J, et al.Functionalization of Mesoporous Silica as an Effective Composite Carrier for Essential Oils with Improved Sustained Release Behavior and Long-Term Antibacterial Performance[J]. Nanotechnology, 2021, 33(3): 035706.
[73] TAKAHASHI K, NAKAGAWA Y, SATO Y, et al.pH-Responsive Release of Anesthetic Lidocaine Derivative QX-OH from Mesoporous Silica Nanoparticles Mediated by Ester Bonds[J]. Journal of Drug Delivery Science and Technology, 2022, 78: 103977.
[74] ZHANG Q Q, GE Z Y, LI B J, et al.Fabrication of a Silica Nanocarrier with Large-Pore Core and Mesoporous Shell for pH-Responsive Drug Delivery[J]. Journal of Sol-Gel Science and Technology, 2019, 92(1): 146-153.
[75] XU Y F, HUANG C X, DANG X J, et al.Preparation of Long-Term Antibacterial SiO2-Cinnamaldehyde Microcapsule via Sol-Gel Approach as a Functional Additive for PBAT Film[J]. Processes, 2020, 8(8): 897.
[76] 谢京颖, 王雅荭, 高彦祥. 食品活性包装研究现状[J]. 中国食品添加剂, 2023, 34(9): 304-315.
XIE J Y, WANG Y H, GAO Y X.Research Status of Food Active Packaging[J]. China Food Additives, 2023, 34(9): 304-315.
[77] BI F Y, ZHANG X, LIU J, et al.Development of Antioxidant and Antimicrobial Packaging Films Based on Chitosan, D-α-Tocopheryl Polyethylene Glycol 1000 Succinate and Silicon Dioxide Nanoparticles[J]. Food Packaging and Shelf Life, 2020, 24: 100503.
[78] ARUMUGAM S, KANDASAMY J, THIYAKU T, et al.Effect of Low Concentration of SiO2 Nanoparticles on Grape Seed Essential Oil/PBAT Composite Films for Sustainable Food Packaging Application[J]. Sustainability, 2022, 14(13): 8073.
[79] MATADAMAS-ORTIZ A, HERNÁNDEZ-HERNÁNDEZ E, CASTAÑO-TOSTADO E, et al. Long-Term Refrigerated Storage of Beef Using an Active Edible Film Reinforced with Mesoporous Silica Nanoparticles Containing Oregano Essential Oil (Lippia Graveolens Kunth)[J]. International Journal of Molecular Sciences, 2023, 24(1): 92.
[80] AL-TAYYAR N A, YOUSSEF A M, AL-HINDI R R. Antimicrobial Packaging Efficiency of ZnO-SiO2 Nanocomposites Infused into PVA/CS Film for Enhancing the Shelf Life of Food Products[J]. Food Packaging and Shelf Life, 2020, 25: 100523.
[81] ZHOU S X, ZHAI X S, ZHANG R, et al.High-Throughput Fabrication of Antibacterial Starch/PBAT/AgNPs@SiO2 Films for Food Packaging[J]. Nanomaterials, 2021, 11(11): 3062.
[82] 孙元军, 董翠华, 庞志强, 等. pH响应型智能包装在食品包装中的研究进展[J]. 包装工程, 2024, 45(13): 25-34.
SUN Y J, DONG C H, PANG Z Q, et al.Research Progress of pH-Responsive Intelligent Packaging in Food Packaging[J]. Packaging Engineering, 2024, 45(13): 25-34.
[83] ZHANG X, LI Y, LI Y L, et al.Development of a High-Barrier, Antimicrobial, and pH-Sensitive Nanocomposite Film Based on Gellan Gum/Sodium Carboxymethylcellulose/Sodium Alginate with Nano-SiO2 for Strawberry Preservation and Monitoring[J]. International Journal of Biological Macromolecules, 2025, 298: 139983.
[84] ZHAO Y L, EL-SHERIF D M, CHENG J, et al. Carboxymethyl Cellulose-Based Colorimetric Sensor Array Incorporating Ionic Liquid-Tuned Anthocyanin and Nano-Silica Coating for Pork Freshness Monitoring[J]. Food Hydrocolloids, 2025, 158: 110601.
[85] 赵嘉蕊, 尚晨凯, 陈美菊, 等. 三基色全彩荧光油墨在防伪包装材料的研究进展[J]. 塑料包装, 2024, 34(5): 14-18.
ZHAO J R, SHANG C K, CHEN M J, et al.Research Progress of Three-Base Color Full Color Fluorescent Ink in Anti-Counterfeit Packaging Materials[J]. Plastics Packaging, 2024, 34(5): 14-18.
[86] ARORA E K, SHARMA V, SETHI G, et al.Bioinspired Designer Surface Nanostructures for Structural Color[J]. Nanotechnology for Environmental Engineering, 2024, 9(3): 461-472.
[87] WANG J D, FU Q Y, ZHANG Y P, et al.Holographic Properties of Irgacure 784/PMMA Photopolymer Doped with SiO2 Nanoparticles[J]. Polymers, 2023, 15(22): 4391.
[88] WU Y, CHEN X, GONG Z Y, et al.Multi-Wavelength Excitation-Dependent Fluorescence with Dynamic Color Gradients for Information Encryption and Anti-Counterfeiting[J]. Journal of Materials Chemistry C, 2024, 12(30): 11497-11505.
[89] LIU W J, YANG L, LI T, et al.Rapid Construction of PVA@CDs/SiO2 Fluorescent/Structural Color Dual-Mode Anti-Counterfeiting Labels via Spray-Coating Method[J]. Polymers, 2024, 16(15): 2211.
[90] YIN H B, GAO S Y, CAI Z D, et al.Experimental and Numerical Study on Thermal Protection by Silica Aerogel Based Phase Change Composite[J]. Energy Reports, 2020, 6: 1788-1797.
[91] XUE R J, CHANG Y W, LIU F J.Fabrication and Performance Evaluation of Aramid Laminated Fabrics Incorporated with Silica Composite Aerogel for Protective Clothing[J]. Ceramics International, 2024, 50(7): 10348-10354.
[92] ARAGÓN-GUTIERREZ A, ARRIETA M P, LÓPEZ- GONZÁLEZ M, et al. Hybrid Biocomposites Based on Poly(lactic acid) and Silica Aerogel for Food Packaging Applications[J]. Materials, 2020, 13(21): 4910.
[93] FAN W W, GAO Q, XIANG J, et al.Synergistic Effect of Silica Aerogel and Titanium Dioxide in Porous Polyurethane Composite Coating with Enhanced Passive Radiative Cooling Performance[J]. Progress in Organic Coatings, 2023, 183: 107763.
PDF(11071 KB)

Accesses

Citation

Detail

Sections
Recommended

/