Review of Development Status and Key Technologies of Launch Vehicle Fairing Closure Systems

JIA Xibei, ZHANG Jun, TIAN Nuoman, LI Hongbing

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 315-325.

PDF(5958 KB)
PDF(5958 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 315-325. DOI: 10.19554/j.cnki.1001-3563.2025.21.034
Equipment Protection

Review of Development Status and Key Technologies of Launch Vehicle Fairing Closure Systems

  • JIA Xibei1, ZHANG Jun2, TIAN Nuoman1, LI Hongbing3*
Author information +
History +

Abstract

The work aims to thoroughly examine launch vehicle fairing closure systems to address challenges in high-precision alignment, deformation control, and assembly stability for large fairings, aiming to meet the demands of high-frequency commercial space launches. By reviewing recent research in fairing assembly, this paper analyzed the principles, pros and cons, and applications of vertical hoisting and horizontal push-installation techniques. It compared closure systems across rocket models, identifying common components like fixtures, walking mechanisms, pose-adjustment mechanisms, and star-fairing support platforms. The paper also delved into how six-degree-of-freedom systems corrected warpage in large flexible thin-walled structures and how high fixtures prevented overturning, ensuring assembly stability and safety. Furthermore, it explored the intelligent trends in closure systems, including smart sensing, real-time feedback, autonomous decision-making, adaptive control, human-machine collaboration, and intelligent interaction, to enhance alignment accuracy, efficiency, and adaptability to complex conditions. Research shows that advanced fairing closure technologies and systems can significantly improve assembly precision and efficiency, reduce risks, and provide valuable references for closure system design. This supports the smooth execution of high-frequency commercial space launches.

Key words

launch vehicle / fairing / fairing closure device / star-fairing assembly / six-degree-of-freedom positioning system / high fixture anti-tilt calculation method

Cite this article

Download Citations
JIA Xibei, ZHANG Jun, TIAN Nuoman, LI Hongbing. Review of Development Status and Key Technologies of Launch Vehicle Fairing Closure Systems[J]. Packaging Engineering. 2025, 46(21): 315-325 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.034

References

[1] GAO Y, ZHAO X G, SUN J B, et al.On Manufacturing Process of Guided Rocket Fairing[J]. Journal of Physics: Conference Series, 2023, 2460(1): 012074.
[2] 侯东旭, 于卫东, 王洋, 等. 超大直径有效载荷整流罩装配工艺方案研究[J]. 机械工程与技术, 2019(3): 188-193.
HOU D X, YU W D, WANG Y, et al.Study on Assembly Process of Super-Large Diameter Payload Fairing[J]. Mechanical Engineering and Technology, 2019(3): 188-193.
[3] 李刚, 唐霄汉, 艾森, 等. 大型整流罩地面分离仿真预示与试验研究[J]. 宇航学报, 2015, 36(7): 833-839.
LI G, TANG X H, AI S, et al.Simulation and Experimental Research on Ground Separation of a Large-Scale Payload Fairing[J]. Journal of Astronautics, 2015, 36(7): 833-839.
[4] 张大鹏, 雷勇军, 柳海龙, 等. 大型柔性整流罩分离特点仿真分析[J]. 振动与冲击, 2015, 34(22): 115-120.
ZHANG D P, LEI Y J, LIU H L, et al.Simulations and Analyses on Separation Characteristics of Large Scale Flexible Fairing[J]. Journal of Vibration and Shock, 2015, 34(22): 115-120.
[5] 于德润, 张松, 陈浩然, 等. 运载火箭用纤维复合材料整流罩研究进展[J]. 纤维复合材料, 2022, 39(3): 140-144.
[6] 王雪明, 谢富原. 碳纤维/双马树脂复合材料整体成型过程分层扩展行为实验研究[J]. 航空学报, 2021, 42(2): 404-412.
WANG X M, XIE F Y.Experimental Study on Behavior of Delamination Propagation of Carbon Fiber/Bismaleimide Composites during Integral Forming Process[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 404-412.
[7] 王焱, 陈红红. 垂直安定面整流罩整体成型[J]. 纤维复合材料, 2020, 37(4): 92-94.
WANG Y, CHEN H H.Integral Molding of Fairing in Front of Vertical Stability[J]. Fiber Composites, 2020, 37(4): 92-94.
[8] 王封, 张亿宝, 郗恒东. 冯·卡门涡旋流动系统中各向异性的实验研究[J]. 实验流体力学, 2024, 38(4): 11-20.
WANG F, ZHANG Y B, XI H D.Experimental Study on the Anisotropy in von KÁRMÁN Swirling Flow System[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 11-20.
[9] 王妍琴, 张杰刚, 谷春杰, 等. 冯·卡门曲线对接桁拉弯成形工艺[J]. 锻压技术, 2022, 47(2): 126-131.
WANG Y Q, ZHANG J G, GU C J, et al.Stretch-Bending Process for Butt Truss with von Karman Curve[J]. Forging & Stamping Technology, 2022, 47(2): 126-131.
[10] 郑晓燕, 王学明. 长征二号F火箭逃逸系统整流罩装配技术[J]. 航天制造技术, 2009(2): 27-29.
ZHENG X Y, WANG X M.Assembly Technology of the Fairing of CZ-2F Escaping System[J]. Aerospace Manufacturing Technology, 2009(2): 27-29.
[11] 范瑞祥, 容易. 我国新一代中型运载火箭的发展展望[J]. 载人航天, 2013, 19(1): 1-4.
FAN R X, RONG Y.The Evolution Prospect of China’s Medium Launch Vehicle[J]. Manned Spaceflight, 2013, 19(1): 1-4.
[12] HONG G, NING G F, YANG F, et al.Research on Overall Optimization Technology of Long March 6A Launch Vehicle[J]. Aerospace China, 2022, 23(3): 3-6.
[13] ELVIS M, LAWRENCE C, SEAGER S.Accelerating Astrophysics with the SpaceX Starship[J]. Physics Today, 2023, 76(2): 40-45.
[14] 杨明辉. 薄壁铝合金整流罩骨架残余应力检测及加工变形控制技术[D]. 哈尔滨: 哈尔滨工业大学, 2018.
YANG M H.The Residual Stress Detection and Machining Deformation Control Technology of Thin-Walled Aluminum Alloy Fairing Frame[D]. Harbin: Harbin Institute of Technology, 2018.
[15] 张骏, 刘玉梅, 刘贝, 等. 大直径柔性整流罩垂直对接平台的设计与验证[J]. 机械工程师, 2020(6): 106-108.
ZHANG J, LIU Y M, LIU B, et al.Design and Verification of Large Diameter Flexible Fairing Vertical Docking Platform[J]. Mechanical Engineer, 2020(6): 106-108.
[16] 程曌. 基于全向移动单元的六自由度调姿平台设计分析[D]. 秦皇岛: 燕山大学, 2024.
CHENG Z.Design and Analysis of a Six-degree- of-freedom Positioning Platform Based on Omnidirectional Mobile Units[D]. Qinhuangdao: Yanshan University, 2024.
[17] 于渊, 于卫东, 韩剑, 等. 卫星整流罩柔性装配技术研究[J]. 机械工程与自动化, 2019(6): 154-155.
YU Y, YU W D, HAN J, et al.Research on Flexible Assembly Technology of Satellite Fairing[J]. Mechanical Engineering & Automation, 2019(6): 154-155.
[18] 晓敏. “千帆” 星座首批商业组网卫星成功发射[J]. 国际太空, 2024(9): 封4.
XIAO M. The First Batch of Commercial Networking Satellites of “Qian Fan” Constellation Were Successfully Launched[J]. Space International, 2024(9): 封4.
[19] 冷月, 张俊秀, 李操, 等. 星罩组合体水平运输辅助支撑机构设计方案[J]. 航天器环境工程, 2024, 41(3): 342-348.
LENG Y, ZHANG J X, LI C, et al.A Design Scheme of Auxiliary Support Mechanism for Horizontal Transportation of Satellite/Fairing Assembly[J]. Spacecraft Environment Engineering, 2024, 41(3): 342-348.
[20] 杨勇, 杨赧, 黄帅, 等. 某型号运载火箭一箭三星总体设计研究[C]// 第十八届上海航天科技论坛暨上海市宇航学会2023学术年会论文集. 上海, 2023: 178-185.
YANG Y, YANG N, HUANG S, et al.Research on the Overall Design of a Certain Type of Carrier Rocket with Three Satellites Launched in One Rocket[C]//Collected Papers of The 18th Shanghai Aerospace Science and Technology Forum & 2023 Academic Annual Conference of Shanghai Society of Astronautics. Shanghai, 2023: 178-185.
[21] 杨建民, 崔照云, 李君. 长征二号丙系列运载火箭构型演变与技术创新[J]. 导弹与航天运载技术(中英文), 2023(3): 1-5.
YANG J M, CUI Z Y, LI J.The Configuration Evolution and Technology Innovation of Long March 2C Rockets[J]. Missiles and Space Vehicles, 2023(3): 1-5.
[22] 佚名. 长征三号乙——大型高轨道大推力火箭[J]. 太空探索, 2007(8): 56-59.
Anon. Long March 3b-a Large Rocket with High Orbit and High Thrust[J]. Space Exploration, 2007(8): 56-59.
[23] 梁昊鹏. 猎鹰九号一箭三飞, 进入标准化复用时代![J]. 卫星与网络, 2018(12): 62-65.
LIANG H P.Falcon 9 One Arrow Three Flights, Entering the Standardized Reuse Era![J]. Satellite & Network, 2018(12): 62-65.
[24] 栾宇, 李东, 袁水林, 等. 长征五号运载火箭分离系统设计与验证技术研究[J]. 导弹与航天运载技术, 2021(2): 9-16.
LUAN Y, LI D, YUAN S L, et al.Study on Design and Validation for Separation System in Development of LM-5 Launch Vehicle[J]. Missiles and Space Vehicles, 2021(2): 9-16.
[25] 徐利杰, 范瑞祥, 王旭. 长征七号甲运载火箭总体方案及发展展望[J]. 导弹与航天运载技术, 2022(2): 1-4.
XU L J, FAN R X, WANG X.General Scheme and Development Prospects of Long March 7A Launch Vehicle[J]. Missiles and Space Vehicles, 2022(2): 1-4.
[26] 宋征宇, 刘立东, 陈晓飞, 等. 新一代中型系列运载火箭长征八号的发展及其关键技术[J]. 宇航学报, 2023, 44(4): 476-485.
SONG Z Y, LIU L D, CHEN X F, et al.Development and Key Technologies of Long March 8 Family: China’s Next-Generation Medium-Lift Launchers[J]. Journal of Astronautics, 2023, 44(4): 476-485.
[27] 顾航瑜. 我国首型4米级直径运载火箭长征十二号首飞成功[N]. 中国航天报, 2024-12-04(001).
GU H Y. China's First 4-Meter-Diameter Launch Vehicle Long March 12 Achieves Successful Maiden Flight[N]. China Space News, 2024-12-04(001).
[28] 张菽. 宇宙神5系列运载火箭的现状及其未来的发展[J]. 导弹与航天运载技术, 2008(2): 56-60.
ZHANG S.Present State of Atlas V Family and Its Future[J]. Missiles and Space Vehicles, 2008(2): 56-60.
[29] 张卫东, 杨赧, 杨帆. 长征六号甲运载火箭及其技术特点[J]. 国际太空, 2022(6): 8-10.
ZHANG W D, YANG N, YANG F.Long March 6A Launch Vehicle and Its Technical Characteristics[J]. Space International, 2022(6): 8-10.
[30] 刘仁伟, 徐晓辉, 谢永权, 等. 基于机械臂辅助的卫星柔顺装配技术研究[J]. 机电工程, 2020, 37(5): 532-536.
LIU R W, XU X H, XIE Y Q, et al.Compliant Assembly Technology of Satellite Assisted by Robot Arm[J]. Journal of Mechanical & Electrical Engineering, 2020, 37(5): 532-536.
[31] CHEN Z H, DU F Z, TANG X Q, et al.A Framework of Measurement Assisted Assembly for Wing-Fuselage Alignment Based on Key Measurement Characteristics[J]. International Journal of Manufacturing Research, 2015, 10(2): 107.
[32] ZOU J, AHMAD R, FAN Y.Research for Major-Parts Digital Assembly System of Large-Scale Airplane[J]. World Scientific and Engineering Academy and Society (WSEAS), 2006, 1: 337-343.
[33] 世豪. 苦尽甘来中国地地导弹事业的起步(上)[J]. 世界航空航天博览(A版), 2006(5): 4-9.
SHI H.The Bitter and Sweet Journey of the Development of China's Ground-to-Ground Missile Industry (Part I)[J]. 世界航空航天博览:A版, 2006(5): 4-9.
[34] ZHU Y G, HUANG X, LI S G.A Novel Six Degrees-of-Freedom Parallel Manipulator for Aircraft Fuselage Assemble and Its Trajectory Planning[J]. Journal of the Chinese Institute of Engineers, 2015, 38(7): 928-937.
[35] 郭洪杰. 飞机大部件自动对接装配技术[J]. 航空制造技术, 2013, 53(13): 72-75.
GUO H J.Automated Joint Assembly Technology for Large Structure of Aircraft[J]. Aeronautical Manufacturing Technology, 2013, 53(13): 72-75.
[36] 于勇, 陶剑, 范玉青. 波音787飞机装配技术及其装配过程[J]. 航空制造技术, 2009, 52(14): 44-47.
YU Y, TAO J, FAN Y Q.Assembly Technology and Process of Boeing 787 Jet[J]. Aeronautical Manufacturing Technology, 2009, 52(14): 44-47.
[37] 刘洋. 轮足式强冗余并联调姿装备控制系统分析与实验研究[D]. 秦皇岛: 燕山大学, 2022.
LIU Y.Analysis and Experimental Research on Control of Wheel-Foot Parallel Attitude Control Equipment with Multiple Actuation Redundancy[D]. Qinhuangdao: Yanshan University, 2022.
[38] 毛崇博. 太阳翼对接调姿转台结构优化设计及轻量化研究[D]. 秦皇岛: 燕山大学, 2024.
MAO C B.Structural Optimization Design and Lightweight Research of Solar Panel Docking and Posture Adjustment Rotary Table[D]. Qinhuangdao: Yanshan University, 2024.
[39] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7): 1319-1324.
GUO Z M, JIANG J X, KE Y L.Posture Alignment for Large Aircraft Parts Based on Three POGO Sticks Distributed Support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7): 1319-1324.
[40] 蔡飞鹏. 飞机部件调姿机构运动学与动力学分析[D]. 大连: 大连交通大学, 2019.
CAI F P.Kinematics and Dynamics Analysis of Aircraft Component Attitude Adjustment Mechanism[D]. Dalian: Dalian Jiaotong University, 2019.
[41] 张骏, 张卫东, 刘玉梅, 等. 大尺寸柔性薄壁结构垂直状态下水平推行装配装置及方法: CN202111472475.7[P].2025-01-03.
ZHANG J, ZHANG W D, LIU Y M, et al. Assembly Device and Method for Horizontal Pushing of Large-Sized Flexible Thin-Walled Structures in Vertical State: CN202111472475.7[P].2025-01-03.
[42] 万世明, 陈亚丽, 肖爽, 等. 基于行列式柔性工装快速重构方法的研究[J]. 航空制造技术, 2015, 58(19): 80-82.
WAN S M, CHEN Y L, XIAO S, et al.Research on Fast Reconstruction Method Based on Determinant of Flexible Tooling System[J]. Aeronautical Manufacturing Technology, 2015, 58(19): 80-82.
[43] MCGHEE R B, FRANK A A.On the Stability Properties of Quadruped Creeping Gaits[J]. Mathematical Biosciences, 1968, 3: 331-351.
[44] MCGHEE R B, ISWANDHI G I.Adaptive Locomotion of a Multilegged Robot over Rough Terrain[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(4): 176-182.
[45] MESSURI D A.Optimization of the Locomotion of a Legged Vehicle with Respect to Maneuverability[J]. The Ohio State University, 1985, 1: 34-39.
[46] GONZALEZ DE SANTOS P, JIMENEZ M A, ARMADA M A. Dynamic Effects in Statically Stable Walking Machines[J]. Journal of Intelligent and Robotic Systems, 1998, 23(1): 71-85.
[47] KANG D O, LEE Y J, LEE S H, et al.A Study on an Adaptive Gait for a Quadruped Walking Robot under External Forces[C]// Proceedings of International Conference on Robotics and Automation. Albuquerque, NM, USA. IEEE, 2002: 2777-2782.
[48] VUKOBRATOVIC M, FRANK A A, JURICIC D.On the Stability of Biped Locomotion[J]. IEEE Transactions on Biomedical Engineering, 1970, 17(1): 25-36.
[49] YONEDA K, HIROSE S.Three-Dimensional Stability Criterion of Integrated Locomotion and Manipulation[J]. Journal of Robotics and Mechatronics, 1997, 9(4): 267-274.
[50] PAPADOPOULOS E G, REY D A.A New Measure of Tipover Stability Margin for Mobile Manipulators[C]// Proceedings of IEEE International Conference on Robotics and Automation. Minneapolis, MN, USA. IEEE, 2002: 3111-3116.
[51] 刘金国, 王越超, 李斌, 等. 变形机器人倾翻稳定性仿真分析[J]. 系统仿真学报, 2006, 18(2): 409-415.
LIU J G, WANG Y C, LI B, et al.Simulation Analysis of Shape Shifting Robot’s Tipover Stability[J]. Journal of System Simulation, 2006, 18(2): 409-415.
[52] GARCIA E, DE SANTOS P G. An Improved Energy Stability Margin for Walking Machines Subject to Dynamic Effects[J]. Robotica, 2005, 23(1): 13-20.
PDF(5958 KB)

Accesses

Citation

Detail

Sections
Recommended

/