Simulation of Influences of Fractal Gap on Dynamic Characteristics of Helical Gear System

BAI Huijuan, SHI Jiajun, DOU Shuihai, WANG Le, DU Yanping, WANG xianwei

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 201-209.

PDF(4642 KB)
PDF(4642 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 201-209. DOI: 10.19554/j.cnki.1001-3563.2025.21.021
Automatic and Intelligent Technology

Simulation of Influences of Fractal Gap on Dynamic Characteristics of Helical Gear System

  • BAI Huijuan1a,b, SHI Jiajun1a,b, DOU Shuihai1a,b, WANG Le1a,b, DU Yanping1a,b*, WANG xianwei2
Author information +
History +

Abstract

The work aims to study the vibration enhancement and engagement instability caused by the nonlinear change of tooth flank clearance in gear transmission systems under high-speed and complex load conditions and to study its influence mechanism on the nonlinear dynamic characteristics of gear transmission systems. The fractal theory was applied to establish a tooth flank clearance model based on the W-M (Weierstrass-Mandelbrot) function. Combined with the Hertz contact theory and the lumped mass method, a nonlinear dynamic model of a multi-degree-of-freedom helical gear system was constructed. A virtual prototype was built using SolidWorks and Adams, and the system responses under different conditions (no-load/150 N rated load, 12 000 r/h and 18 000 r/h) and different fractal clearances were compared and analyzed. Since the fractal dimension was a key parameter determining the fractal clearance, this study took it as a control variable to explore its impact on the system response. The research showed that at high speed and no-load, a low fractal dimension could cause an increase in nonlinear vibration, while under load, a high fractal dimension helped improve system stability but intensified high-frequency disturbances at high speeds. Further analysis revealed that at fractal dimension D=1.5, a better balance could be achieved between dynamic stability and processing cost. This study provides a theoretical basis for the dynamic characteristic analysis of helical gear transmission systems and has certain guiding significance for the optimization design of tooth flank clearance.

Key words

dynamic modeling / tooth flank clearance / fractal dimension / Adams

Cite this article

Download Citations
BAI Huijuan, SHI Jiajun, DOU Shuihai, WANG Le, DU Yanping, WANG xianwei. Simulation of Influences of Fractal Gap on Dynamic Characteristics of Helical Gear System[J]. Packaging Engineering. 2025, 46(21): 201-209 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.021

References

[1] ZHENG Z B, YAN H Z, WU J M, et al.Tribo-Dynamic Modelling and Analysis for a High-Speed Helical Gear System with Time-Varying Backlash and Friction under Elastohydrodynamic Lubrication Condition[J]. Meccanica, 2024, 59(7): 1019-1036.
[2] XIA H, MENG F S, ZHANG X, et al.Nonlinear Dynamics Analysis of Gear System Considering Time-Varying Meshing Stiffness and Backlash with Fractal Characteristics[J]. Nonlinear Dynamics, 2023, 111(16): 14851-14877.
[3] YU J H, WANG H Y, REN D D.Chaos Analysis of Single-Stage Spur Gear System Considering Backlash Fractal[J]. Journal of Vibration Engineering & Technologies, 2023, 11(7): 3481-3491.
[4] 章菊, 梁爽, 李学鋆. 考虑多因素的减速器齿轮传动系统非线性动力学特性研究[J]. 应用力学学报, 2021, 38(2): 794-801.
ZHANG J, LIANG S, LI X Y.Study on Nonlinear Dynamics of Gearbox Transmission System Considering Multiple Influencing Factors[J]. Chinese Journal of Applied Mechanics, 2021, 38(2): 794-801.
[5] 刘杰, 赵伟强, 任望. 具有动态侧隙的齿轮传动系统动力响应分析[J]. 振动测试与诊断, 2020, 40(6): 1184-1190.
LIU J, ZHAO W Q, REN W.Dynamic Response Analysis of Gear Transmission System with Dynamic Backlash[J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(6): 1184-1190.
[6] 陈奇, 汪金成, 姚志刚, 等. 计及齿面微观特征影响的齿轮非线性动力学模型研究[J]. 应用力学学报, 2019, 36(6): 1300-1306.
CHEN Q, WANG J C, YAO Z G, et al.Research on Nonlinear Dynamics Model of Gear Pair Considering Tooth Surface Micro-Characters[J]. Chinese Journal of Applied Mechanics, 2019, 36(6): 1300-1306.
[7] 李小彭, 徐金池, 潘五九, 等. 含齿面分形啮合刚度的齿轮传动系统动力学[J]. 哈尔滨工业大学学报, 2019, 51(7): 56-62.
LI X P, XU J C, PAN W J, et al.Dynamics of Gear Transmission System with Fractal Meshing Stiffness on
8 Tooth Surface[J]. Journal of Harbin Institute of Technology, 2019, 51(7): 56-62.
[8] HAN J, LI G H, TIAN X Q, et al.Nonlinear Dynamics Analysis of Gear Transmission System Based on Tooth Surface Microtopography[J]. Journal of Vibration Engineering & Technologies, 2024, 12(2): 1753-1772.
[9] YANG C B, MA H L, ZHANG T, et al.Study on Gear Contact Stiffness and Backlash of Harmonic Drive Based on Fractal Theory[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2024, 238(7): 805-814.
[10] PAN W J, LING L Y, QU H Y, et al.Early Wear Fault Dynamics Analysis Method of Gear Coupled Rotor System Based on Dynamic Fractal Backlash[J]. Journal of Computational and Nonlinear Dynamics, 2022, 17: 011003.
[11] 李永聪, 袁森, 樊战军, 等. 含间隙转塔传动系统机电联合仿真研究[J]. 机械设计与制造, 2022(4): 170-173.
LI Y C, YUAN S, FAN Z J, et al.Study on Electromechanical Joint Simulation of Transmission System with Clearance Turrets[J]. Machinery Design & Manufacture, 2022(4): 170-173.
[12] 蒲明辉, 李敏, 卢煜海, 等. 基于ADAMS对偏心齿轮分插机构的运动仿真及改进[J]. 机械传动, 2013, 37(9): 70-73.
PU M H, LI M, LU Y H, et al.Kinematic Simulation and Improvement of Transplanting Mechanism with Eccentric Gear Based on ADAMS[J]. Journal of Mechanical Transmission, 2013, 37(9): 70-73.
[13] 张华, 宋梅利, 刘永, 等. 考虑齿侧间隙的两栖无人机变形机构动态特性分析[J]. 机械制造与自动化, 2021, 50(4): 35-39.
ZHANG H, SONG M L, LIU Y, et al.Analysis of Dynamic Characteristics of Deformation Mechanism of Amphibious UAV Considering Backlash[J]. Machine Building & Automation, 2021, 50(4): 35-39.
[14] 吴启豪, 韩江桂, 张文群. 考虑齿侧间隙影响的船用人字齿轮稳定性分析[J]. 机械工程师, 2019(5): 19-23.
WU Q H, HAN J G, ZHANG W Q.Stability Analysis of Marine Herringbone Gear Considering the Influence of Backlash[J]. Mechanical Engineer, 2019(5): 19-23.
[15] 徐震, 王琪, 杨丽新. 双齿轮并联传动的负载均衡性仿真研究[J]. 现代制造工程, 2011(3): 49-53.
XU Z, WANG Q, YANG L X.Simulation Research of Load Sharing for Double-Gear Parallel Driving Systems[J]. Modern Manufacturing Engineering, 2011(3): 49-53.
[16] 范椿林, 邱晓波, 单东升, 等. 齿侧间隙作用下小口径车载机关炮身管的振动响应[J]. 机械传动, 2015, 39(3): 137-140.
FAN C L, QIU X B, SHAN D S, et al.Vibration Response of Small-Caliber Vehicular Gun Tube with Gear Backlash[J]. Journal of Mechanical Transmission, 2015, 39(3): 137-140.
[17] 沈世德, 徐学忠. 机械原理[M]. 北京: 机械工业出版社, 2009.
SHEN S D, XU X Z.Mechanisms and Machine Theory[M]. Beijing: China Machine Press, 2009.
PDF(4642 KB)

Accesses

Citation

Detail

Sections
Recommended

/