Effects of Different Ozone Concentrations on Storage Quality of In-shell Peanuts Based on Principal Component Analysis

JI Ning, GAO Qi, YANG Tongli, LI Yuxin, NIE Huali, WANG Rui, DENG Jinfu

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 145-156.

PDF(3649 KB)
PDF(3649 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 145-156. DOI: 10.19554/j.cnki.1001-3563.2025.21.016
Agro-products Preservation and Food Packaging

Effects of Different Ozone Concentrations on Storage Quality of In-shell Peanuts Based on Principal Component Analysis

  • JI Ning1,2, GAO Qi1,2, YANG Tongli1, LI Yuxin1,2, NIE Huali1,2, WANG Rui1,2, DENG Jinfu3
Author information +
History +

Abstract

The work aims to investigate the effects of different ozone concentrations on the primary nutritional indicators and sensory quality of in-shell peanuts, and to identify the optimal ozone fumigation concentration under high-temperature and high-humidity conditions. Five ozone levels (0, 50, 100, 200, and 400 mg/L) were applied for 2 h under ambient conditions. After treatment, the peanuts were transferred to an artificial climate chamber for accelerated storage at a temperature of (50±2) ℃ and a relative humidity of (90±5)%. Samples were collected on day 0, 20, 40, 60, and 80, and several physicochemical parameters, including color difference, moisture content, acid value, vitamin E, protein content, and hardness, were measured across all treatment groups. Principal component analysis (PCA) was conducted to reduce dimensionality and perform integrated evaluation of the multivariate data. At the conclusion of the 80-day storage period, the peanuts treated with 100 mg/L ozone exhibited the following metrics: a total protein content of 251.969 1 mg/g, a water activity of 0.508 4, an acid value of 0.357 5 mg/g, an iodine value of 95.157 2 g/100 g, a kernel a* value of 3.311 9, a shell L* value of 57.968, a kernel b* value of 18.271, a shell hardness of 8.029 5 N, a moisture content of 3.756 9%, and a vitamin E content of 0.295 9 mg/100 g. All these indicators were superior to those of other treatments. Furthermore, this treatment achieved the highest comprehensive score during the storage period, indicating that the 100 mg/L ozone treatment was more effective in maintaining the storage quality of in-shell peanuts. The analysis revealed that ozone concentration has a significant impact on the quality of in-shell peanuts during storage. Among all treatments, the 100 mg/L ozone group demonstrated the most favorable outcomes in terms of delaying oxidation, maintaining nutritional components, and preserving structural integrity.

Key words

in-shell peanuts / ozone treatment / storage / quality / principal component analysis

Cite this article

Download Citations
JI Ning, GAO Qi, YANG Tongli, LI Yuxin, NIE Huali, WANG Rui, DENG Jinfu. Effects of Different Ozone Concentrations on Storage Quality of In-shell Peanuts Based on Principal Component Analysis[J]. Packaging Engineering. 2025, 46(21): 145-156 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.016

References

[1] LIAO X, XIE H X, HU Z C, et al.Peanut-Shelling Technologies and Equipment: A Review of Recent Developments[J]. Agriculture, 2024, 14(7): 1178.
[2] 张帮锐, 张军以. 中国主要油料作物2000—2020年生产时空演化特征及驱动因素分析[J]. 西南农业学报, 2024(6): 1377-1385.
ZHANG B R, ZHANG J Y.Effective Connection between Agricultural Technology Support Consolidates and Expands of Poverty Alleviation Achievements, and Rural Revitalization: Taking Ethnic Areas of Sichuan as an Example[J]. Southwest China Journal of Agricultural Sciences, 2024(6): 1377-1385.
[3] 国家统计局. 中国统计年鉴2023[DB/OL]. (2024-01-01)[2024-12-01]. http://www.stats.gov.cn/sj/ndsj/2023/indexch.
htm. National Bureau of Statistics of China. China Statistical Yearbook 2023[DB/OL]. (2024-01-01)[2024-12-01]. http://www.stats.gov.cn/sj/ndsj/2023/indexch.htm.
[4] 谢永康, 王茜, 巨浩羽, 等. 5种干燥方式对花生干燥特性及品质的影响[J]. 食品与机械, 2025, 41(3): 197-203.
XIE Y K, WANG X, JU H Y, et al.Effects of Five Drying Methods on the Drying Characteristics and Quality of Peanuts[J]. Food & Machinery, 2025, 41(3): 197-203.
[5] 王允, 刘冬梅, 尹海燕, 等. 花生应答黄曲霉菌侵染的代谢组学分析[J]. 食品安全质量检测学报, 2024, 15(14): 249-256.
WANG Y, LIU D M, YIN H Y, et al.Metabolomics Analysis of Peanut Response to Aspergillus Flavus Infection[J]. Journal of Food Safety & Quality, 2024, 15(14): 249-256.
[6] 邵琦, 鲁明. 鲜食花生贮藏技术研究概述[J]. 保鲜与加工, 2024, 24(4): 81-85.
SHAO Q, LU M.Overview of Research on Storage Technology of Fresh Peanuts[J]. Storage and Process, 2024, 24(4): 81-85.
[7] SUN H G, ZHOU L, SHU M Y, et al.Estimation of Peanut Southern Blight Severity in Hyperspectral Data Using the Synthetic Minority Oversampling Technique and Fractional-Order Differentiation[J]. Agriculture, 2024, 14(3): 476.
[8] NORLIA M, JINAP S, NOR-KHAIZURA M A R, et al. Aspergillus Section Flavi and Aflatoxins: Occurrence, Detection, and Identification in Raw Peanuts and Peanut-Based Products along the Supply Chain[J]. Frontiers in Microbiology, 2019, 10: 2602.
[9] SANCHEZ D R, JESPERSEN B M, RASMUSSEN L H, et al.Ozone Treatment of Wheat Reduces Common Bunt (Tilletia SPP.) Infection[J]. Journal of Stored Products Research, 2025, 111: 102488.
[10] VLASSI E, VLACHOS P, KORNAROS M.Effect of Ozonation on Table Grapes Preservation in Cold Storage[J]. Journal of Food Science and Technology, 2018, 55(6): 2031-2038.
[11] POWELL A, SCOLDING J W S. Direct Application of Ozone in Aquaculture Systems[J]. Reviews in Aquaculture, 2018, 10(2): 424-438.
[12] LI J Z, XI J H, WANG R X, et al.Ozone Treatment Controlled Postharvest Table Grape Blue Mold by Targeting Cell Membrane to Cause Membrane Integrity Disruption and Inhibited the Development of Talaromyces rugulosus and Accumulation of Ochratoxin A[J]. Postharvest Biology and Technology, 2025, 224: 113490.
[13] SCIMONE G, CARUCCI M G, RISOLI S, et al.Ozone Treatment as an Approach to Induce Specialized Compounds in Melissa Officinalis Plants[J]. Plants, 2024, 13(7): 933.
[14] CONTE G, FONTANELLI M, GALLI F, et al.Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update[J]. Toxins, 2020, 12(8): 486.
[15] 张政. 臭氧处理对花生红衣中多酚类物质的影响研究[D]. 泰安: 山东农业大学, 2015.
ZHANG Z.Influences of ozone treatment on polyphenols in peanut skins[D]. Taian: Shandong Agricultural University, 2015.
[16] LIN X X, ZHANG W X, XIONG J, et al.Polarized Electric Field Induced by Piezoelectric Effect of Ozone Micro-Nano Bubbles/Spontaneously Polarized Ceramic to Boost Ozonolysis for Efficient Fruit Sterilization[J]. Food Chemistry, 2025, 466: 142191.
[17] 纪可欣. 脂肪暴露阶段及程度对烤花生制品中微生物抗热性的影响研究[D]. 雅安: 四川农业大学, 2024.
JI K X.Effect of Fat Exposure Stage and Degree on Heat Resistance of Microorganisms in Roasted Peanut Products[D]. Ya'an: Sichuan Agricultural University, 2024.
[18] 黄潇漪, 贾利蓉, 孙玉鼎, 等. 玫瑰和陈皮对烘炒花生仁货架期品质的影响[J]. 中国粮油学报, 2024, 39(7): 19-26.
HUANG X Y, JIA L R, SUN Y D, et al.Effect of Rose and Pericarpium Citri Reticulatae on Shelf-Life Quality of Roasted Peanut Kernels[J]. Journal of the Chinese Cereals and Oils Association, 2024, 39(7): 19-26.
[19] 武天伦, 郭辉, 高国民, 等. 四粒红花生物料特性试验与测定[J]. 干旱地区农业研究, 2023, 41(1): 272-276.
WU T L, GUO H, GAO G M, et al.Experiment and Measurement of Silihong Peanut Plants Characteristics[J]. Agricultural Research in the Arid Areas, 2023, 41(1): 272-276.
[20] 杜蒙, 孙允超, 李雯雯, 等. 凯氏定氮法测定花生中蛋白质方法的优化[J]. 食品安全导刊, 2023(18): 125-127.
DU M, SUN Y C, LI W W, et al.Optimization of Kjeldahl Method for Determination of Protein Methods in Peanuts[J]. China Food Safety Magazine, 2023(18): 125-127.
[21] 彭琴, 符裕红, 莫熙礼, 等. 贵州喀斯特山区野生榛子营养成分分析[J]. 福建农业学报, 2016, 31(2): 145-150.
PENG Q, FU Y H, MO X L, et al.Nutritional Composition of Wild Hazelnuts from Karst Mountains in Guizhou Province[J]. Fujian Journal of Agricultural Sciences, 2016, 31(2): 145-150.
[22] 邱展英, 吴怡颖, 袁书鑫, 等. 原料花生品种对咸干花生储藏品质的影响[J]. 中国粮油学报, 2024, 39(9): 18-26.
QIU Z Y, WU Y Y, YUAN S X, et al.Effect of Peanut Varieties on Storage Qualities of Salty Peanut[J]. Journal of the Chinese Cereals and Oils Association, 2024, 39(9): 18-26.
[23] 权美平. 浸提法提取杏仁油工艺参数优化[J]. 中国调味品, 2014, 39(1): 1-3.
QUAN M P.Optimizing the Extraction Parameters of Bitter Almond Oil[J]. China Condiment, 2014, 39(1): 1-3.
[24] 杨丽, 纪东彬, 薛敦辉, 等. 食用油脂碘值快速测定方法探究[J]. 粮油食品科技, 2014, 22(2): 61-63.
YANG L, JI D B, XUE D H, et al.A Rapid Method for the Determination of Edible Oil Iodine Value[J]. Science and Technology of Cereals, Oils and Foods, 2014, 22(2): 61-63.
[25] 陈伶, 王培, 李青益, 等. 响应面法优化栾树种仁油的提取工艺及其性质研究[J]. 化学与生物工程, 2024, 41(12): 62-68.
CHEN L, WANG P, LI Q Y, et al.Optimization in Extraction Process of Seed Oil from Koelreuteria Paniculate Laxm.by Response Surface Methodology and Its Properties[J]. Chemistry & Bioengineering, 2024, 41(12): 62-68.
[26] 姜曙光, 雷红霞. SZC-101型脂肪测定仪测定花生粗脂肪方法优化研究[J]. 现代农业科技, 2017(4): 245.
JIANG S G, LEI H X.Study on Optimization of Determination Method of Peanut Crude Fat by SZC-101 Fat Analyzer[J]. Modern Agricultural Science and Technology, 2017(4): 245.
[27] 付春, 张小军, 岳福良, 等. 特色花生新品系营养品质解析[J]. 中国农业大学学报, 2017, 22(5): 32-38.
FU C, ZHANG X J, YUE F L, et al.Nutrition and Quality Analysis of Special New Peanut Varieties[J]. Journal of China Agricultural University, 2017, 22(5): 32-38.
[28] 范俊燕. 内源性蛋白酶在花生加工中的性质与应用探讨[D]. 无锡: 江南大学, 2022.
FAN J Y.Properties and Potential Applications of Endogenous Proteases in Peanut Processing[D]. Wuxi: Jiangnan University, 2022.
[29] 车宇博, 张峰, 马利华, 等. 酸菜对风干香肠中脂类氧化及品质的影响[J]. 中国调味品, 2016, 41(9): 67-72.
CHE Y B, ZHANG F, MA L H, et al.The Effect of Pickled Chinese Cabbage on Lipid Oxidation and Quality of Sausage[J]. China Condiment, 2016, 41(9): 67-72.
[30] 郭刚军, 马尚玄, 徐荣, 等. 不同贮藏条件下3种市售澳洲坚果产品品质及脂肪酸变化[J]. 经济林研究, 2021, 39(2): 35-45.
GUO G J, MA S X, XU R, et al.Quality and Fatty Acid Changes of Three Kinds of Merchant Macadamia Nut Products under Different Storage Conditions[J]. Non-wood Forest Research, 2021, 39(2): 35-45.
[31] 谢辉, 张雯, 王敏, 等. 不同干燥方法对无核白鸡心葡萄干色泽及次生代谢物质变化的影响[J]. 新疆农业科学, 2018, 55(12): 2166-2174.
XIE H, ZHANG W, WANG M, et al.Effect of Drying Process on the Color and the Changes of Secondary Metabolites in Centennial Seedless Raisin[J]. Xinjiang Agricultural Sciences, 2018, 55(12): 2166-2174.
[32] SRIPONG K, UTHAIRATANAKIJ A, JITAREERAT P.Impact of Gaseous Ozone on Microbial Contamination and Quality of Fresh-Cut Durian[J]. Scientia Horticulturae, 2022, 294: 110799.
[33] FENG L F, ZHANG K, GAO M S, et al Inactivation of Vibrio Parahaemolyticus by Aqueous Ozone[J]. Journal of Microbiology and Biotechnology, 2018, 28(8): 1233-1246.
[34] 王殿轩, 刘磊, 黄依林, 等. 影响花生果安全储藏的环境因素研究进展[J]. 植物保护, 2022, 48(3): 31-38.
WANG D X, LIU L, HUANG Y L, et al.Advances in the Environmental Factors Influencing Safe Storage of Peanut Pods[J]. Plant Protection, 2022, 48(3): 31-38.
[35] 金艳. 低水分活度食品中非热杀菌技术的应用研究进展[J]. 中外食品工业, 2025(6): 10-12.
JIN Y.Research Progress on Application of Non-Thermal Sterilization Technology in Low Water Activity Food[J]. Global Food Industry, 2025(6): 10-12.
[36] CHEN P X, WANG Y K, ZHU W X, et al.Effect of Different Drying Techniques on Moisture Migration, Nutritional Profile and Sensory Attributes of Peanut Pods[J]. LWT, 2025, 216: 117360.
[37] JIAO B, GUO X, CHEN Y Y, et al.Low-Fat Microwaved Peanut Snacks Production: Effect of Defatting Treatment on Structural Characteristics, Texture, Color, and Nutrition[J]. Journal of Integrative Agriculture, 2024, 23(7): 2491-2502.
[38] SHAH N, SULAIMAN A, SIDEK N S M, et al. Quality Assessment of Ozone-Treated Citrus Fruit Juices[J]. International Food Research Journal, 2019, 26(5): 1405-1415.
[39] ZHU D S, REN X J, WEI L W, et al.Collaborative Analysis on Difference of Apple Fruits Flavour Using Electronic Nose and Electronic Tongue[J]. Scientia Horticulturae, 2020, 260: 108879.
[40] LEVANDER O A, MORRIS V C, HIGGS D J, et al.Nutritional Interrelationships among Vitamin E, Selenium, Antioxidants and Ethyl Alcohol in the Rat1[J]. The Journal of Nutrition, 1973, 103(4): 536-542.
[41] HELWANI Z, ZAHRINA I, TANIUS N, et al.Polyunsaturated Fatty Acid Fractionation from Crude Palm Oil (CPO)[J]. Processes, 2021, 9(12): 2183.
[42] FERRARA F, PAMBIANCHI E, PECORELLI A, et al.Redox Regulation of Cutaneous Inflammasome by Ozone Exposure[J]. Free Radical Biology and Medicine, 2020, 152: 561-570.
[43] LIU Q L, ZHANG R, XUE H L, et al.Ozone Controls Potato Dry Rot Development and Diacetoxyscirpenol Accumulation by Targeting the Cell Membrane and Affecting the Growth of Fusarium Sulphureus[J]. Physiological and Molecular Plant Pathology, 2022, 118: 101785.
[44] SUSAN A I, SASMITA E, YULIANTO E, et al.Ozone Application to Extend Shelf Life of Vegetables by Microbial Growth Inhibition[J]. MATEC Web of Conferences, 2018, 197: 02004.
[45] ZHANG H J, LI K L, ZHANG X J, et al.Effects of Ozone Treatment on the Antioxidant Capacity of Postharvest Strawberry[J]. RSC Advances, 2020, 10(63): 38142-38157.
PDF(3649 KB)

Accesses

Citation

Detail

Sections
Recommended

/