Research Progress on Application of Photodynamic Nano-antibacterial Composite Technology in Food Preservation

TAN Yuxuan, ZHANG Shaojie, ZHOU Guozhong, LIU Baolin, QIN Yanbin

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 101-114.

PDF(6634 KB)
PDF(6634 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (21) : 101-114. DOI: 10.19554/j.cnki.1001-3563.2025.21.012
Agro-products Preservation and Food Packaging

Research Progress on Application of Photodynamic Nano-antibacterial Composite Technology in Food Preservation

  • TAN Yuxuan, ZHANG Shaojie, ZHOU Guozhong, LIU Baolin, QIN Yanbin*
Author information +
History +

Abstract

The current research status and development potential of this technology as a green multifunctional preservation strategy were systematically outlined in this review. By distinguishing between direct and indirect contact modes of photosensitizers with food substrates, the current applications of photodynamic inactivation were introduced. Based on functional classification, the application advantages of nano-antibacterial technology in nano-antibacterial agents and food packaging were explored. The latest research progress of photodynamic nano-antibacterial technology in nanoemulsions, food packaging, and photocatalysis was reviewed by integrating their synergistic mechanisms. Combined with composite application examples, the development trends were analyzed. The combined use of these technologies effectively inactivates microorganisms, with photosensitizers and nanoparticles not only serving as antimicrobial agents but also enhancing functional properties of composite films and packaging materials. Moreover, depending on material selection, considerable potential for innovation in environmental sustainability and intelligent responsiveness is exhibited by these components. Moving forward, the development of low-cost, multifunctional, and easily scalable photodynamic nano-antimicrobial systems that incorporate intelligent and responsive packaging and green preparation techniques will represent a core innovation direction in food preservation technology, ultimately providing the food industry with safe, efficient, and sustainable preservation solutions.

Key words

photodynamic inactivation / nano antibacterial / food preservation / intelligent packaging

Cite this article

Download Citations
TAN Yuxuan, ZHANG Shaojie, ZHOU Guozhong, LIU Baolin, QIN Yanbin. Research Progress on Application of Photodynamic Nano-antibacterial Composite Technology in Food Preservation[J]. Packaging Engineering. 2025, 46(21): 101-114 https://doi.org/10.19554/j.cnki.1001-3563.2025.21.012

References

[1] 田茂松, 黄培源, 郑蕾, 等. 2022年中国大陆食品中沙门菌耐药性特征分析[J]. 中国食品卫生杂志, 2024, 36(12): 1385-1393.
TIAN M S, HUANG P Y, ZHENG L, et al.Antimicrobial Resistance Characteristic Analysis of Salmonella Recovered from Foods in Chin's Mainland in 2022[J]. Chinese Journal of Food Hygiene, 2024, 36(12): 1385-1393.
[2] 范鹏辉, 李红秋, 褚遵华, 等. 2023年中国大陆食源性疾病暴发监测结果分析[J]. 中国食品卫生杂志, 2024, 36(10): 1199-1208.
FAN P H, LI H Q, CHU Z H, et al.Analysis of Foodborne Diseases Outbreak Surveillance in China’s Mainland, 2023[J]. Chinese Journal of Food Hygiene, 2024, 36(10): 1199-1208.
[3] JIE Y, SHI T Y, ZHANG Z J.Controlled Atmosphere Storage Drive Proteomic Change in Chinese Daohuaxiang[J]. Food Chemistry: X, 2024, 21: 101005.
[4] QU B, SHAO G Q, YANG N, et al.Revolutionizing Food Sustainability: Leveraging Magnetic Fields for Food Processing and Preservation[J]. Trends in Food Science & Technology, 2024, 150: 104593.
[5] 潘海军, 王锋, 马路凯, 等. 姜黄素光动力技术在微生物杀菌中的研究进展[J]. 保鲜与加工, 2025, 25(1): 130-138.
PAN H J, WANG F, MA L K, et al.Progress in Curcumin-Mediated Photodynamic Technology for Microbial Sterilization[J]. Storage and Process, 2025, 25(1): 130-138.
[6] 路玲, 李莉, 罗自生. 纳米抗菌剂在食品中的应用研究进展[J]. 食品与发酵工业, 2018, 44(9): 275-281.
LU L, LI L, LUO Z S.Application and Development of Nano Antimicrobial Agent in Food[J]. Food and Fermentation Industries, 2018, 44(9): 275-281.
[7] 纪雅烨, 虞冰, 施阳晨. 纳米技术在食品科学工程中的应用[J]. 粮油与饲料科技, 2024(7): 147-149.
JI Y Y, YU B, SHI Y C.Application of Nanotechnology in Food Science and Engineering[J]. Grain Oil and Feed Technology, 2024(7): 147-149.
[8] PHUINTHIANG P, CHANNEI D, RATANANIKOM K, et al.Antibacterial Properties of TiO2 Nano Coating on Food Packaging Surfaces Against Escherichia coli and Salmonella typhimurium[J]. Surface Engineering, 2023, 39(4): 433-444.
[9] BAPTISTA M S, CADET J, DI MASCIO P, et al.Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways[J]. Photochemistry and Photobiology, 2017, 93(4): 912-919.
[10] KIM D, DANG V Q, TEETS T S.Improved Transition Metal Photosensitizers to Drive Advances in Photocatalysis[J]. Chemical Science, 2023, 15(1): 77-94.
[11] 张蓉希. 包合维生素K3的多糖基光动力抗菌膜的制备及其对冷鲜羊肉贮藏期的影响[D]. 呼和浩特: 内蒙古农业大学, 2024.
ZHANG R X.Preparation of Polysaccharide-Based Photodynamic Antibacterial Film with Vitamin K3 and Its Effect on Storage Period of Cold Fresh Mutton[D]. Hohhot: Inner Mongolia Agricultural University, 2024.
[12] LI L L, XIA L, XIAO F, et al.Antimicrobial Photodynamic Inactivation pH-Responsive Films Based on Gelatin/Chitosan Incorporated with Aloe-Emodin[J]. Food Chemistry, 2024, 444: 138686.
[13] ÇELIKÇI N, ZıBA C A, TÜMER M. Chitosan-Based Schiff Base Compounds: Synthesis, Chemical Characterization and Antibacterial Properties[J]. Journal of Fluorescence, 2025, 35(8): 1714-1721.
[14] WU Y, LAN J X, XU L L, et al.Degradation and Selective-Oxidization of Chitosan Realize Preparation of Cotton Textiles with Prominent Antibacterial and Antiviral Activity via One-Step Esterification[J]. Applied Surface Science, 2025, 695: 162903.
[15] HE C Y, YUAN L B, BI S W, et al.Modified Chitosan-Based Coating/Packaging Composites with Enhanced Antibacterial, Antioxidant, and UV-Resistant Properties for Fresh Food Preservation[J]. ACS Applied Materials & Interfaces, 2024, 16(36): 48352-48362.
[16] DENG Z, BHEEMANABOINA R R Y, LUO Y, et al. Aloe Emodin-Conjugated Sulfonyl Hydrazones as Novel Type of Antibacterial Modulators Against S. Aureus 25923 through Multifaceted Synergistic Effects[J]. Bioorganic Chemistry, 2022, 127: 106035.
[17] HONG M, KIM M, YOON J, et al.Excited-State Intramolecular Hydrogen Transfer of Compact Molecules Controls Amyloid Aggregation Profiles[J]. JACS Au, 2022, 2(9): 2001-2012.
[18] 万昕冉, 朱婷伟, 逯子娇, 等. Ca2+对豌豆蛋白热诱导和冷诱导凝胶特性及结构的影响[J]. 食品科学, 2025, 46(16): 72-80.
WAN X R, ZHU T W, LU Z J, et al.Effect of Ca2+ on Properties and Structure of Heat-Induced and Cold-Induced Pea Protein Gels[J]. Food Science, 2025, 46(16): 72-80.
[19] LI X, GUO Z Q, SONG Y K, et al.Photodynamic Inactivation Mediated by Natural Alizarin on Bacteria for the Safety of Fresh-Cut Apples[J]. Food Research International, 2025, 200: 115441.
[20] WU J L, PANG Y K, LIU D, et al.Photodynamic Inactivation of Staphylococcus Aureus Using Aloe-Emodin as Photosensitizer[J]. Food Research International, 2024, 178: 113959.
[21] 张涵, 王敬敬, 赵勇. 姜黄素介导的光动力技术保障三文鱼品质安全初步机制探究[J]. 上海海洋大学学报, 2025, 34(1): 237-247.
ZHANG H, WANG J J, ZHAO Y.Study on the Preliminary Mechanism of Curcumin-Mediated Photodynamic Technology to Guarantee the Quality Safety of Salmon[J]. Journal of Shanghai Ocean University, 2025, 34(1): 237-247.
[22] VIEIRA C, TRIGO M, DIAS C J, et al.Photodynamic Inactivation as a Novel Approach for Seabass Decontamination: Effectiveness of TMPyP and Methylene Blue Treatments[J]. Food and Bioprocess Technology, 2025, 18(8): 7112-7130.
[23] 王唯. 新型纳米抗菌材料的设计及抗菌机制分析[D]. 合肥: 中国科学技术大学, 2021.
WANG W.Design of New Nano Antibacterial Materials and Analysis of Antibacterial Mechanism[D]. Hefei: University of Science and Technology of China, 2021.
[24] 潘蒋娟, 李培骏, 苏东林, 等. 纳米银诱导微生物氧化应激及其抗菌机制[J]. 中国食品学报, 2021, 21(11): 389-396.
PAN J J, LI P J, SU D L, et al.Microbial Oxidative Stress Induced by Silver Nanoparticles and Its Antimicrobial Mechanism[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 389-396.
[25] 曹雪玲, 陈静, 李艳薇, 等. 纳米银胶的制备及对食品的抗菌性能研究[J]. 食品工业科技, 2012, 33(1): 256-257.
CAO X L, CHEN J, LI Y W, et al.Study on Preparation of Nano-Silver Colloids and Its Antibacterial Properties of Some Common Foods[J]. Science and Technology of Food Industry, 2012, 33(1): 256-257.
[26] ZHANG Z J, QIAN L M, ZHANG N, et al.Engineering a Non-Antibiotic Biomimetic Nano-Urchin for Broad- Spectrum and Long-Acting Antibacterial Spraying[J]. Advanced Functional Materials, 2025, 35(34): 2501119.
[27] CHEN P P, WANG G Y, HAO C L, et al.Peptide-Directed Synthesis of Chiral Nano-Bipyramids for Controllable Antibacterial Application[J]. Chemical Science, 2022, 13(35): 10281-10290.
[28] 张艳平, 王申丽, 任顺成. 聚乙烯醇/纳米银复合薄膜制备及其在生鲜面叶的保鲜应用[J]. 粮油食品科技, 2024, 32(4): 192-200.
ZHANG Y P, WANG S L, REN S C.Preparation of Polyvinyl Alcohol/Silver Nanoparticles Film and Its Application in Fresh Noodles Leaf Preservation[J]. Science and Technology of Cereals, Oils and Foods, 2024, 32(4): 192-200.
[29] ZHANG M M, SUI Z H, SUN L J, et al.Improved Mechanical, Anti-UV, Antibacterial and Hydrophobic Properties of Hemp Cellulose Fabrics with Nano-ZnO and Perfluorooctanol-Decorated Waterborne Polyurethane Coating[J]. International Journal of Biological Macromolecules, 2025, 306: 141515.
[30] DENG X Y, YU C H, ZHANG X P, et al.A Chitosan-Coated PCL/Nano-Hydroxyapatite Aerogel Integrated with a Nanofiber Membrane for Providing Antibacterial Activity and Guiding Bone Regeneration[J]. Nanoscale, 2024, 16(20): 9861-9874.
[31] THAKUR P, ARIVARASAN V K, KUMAR G, et al.Synthesis of Pectin and Eggshell Biowaste-Mediated Nano-Hydroxyapatite (nHAp), Their Physicochemical Characterizations, and Use as Antibacterial Material[J]. Applied Biochemistry and Biotechnology, 2024, 196(1): 491-505.
[32] 鄢俐, 古丽容, 赖富饶, 等. 负载小麦醇溶蛋白纳米银胶体颗粒的抗菌壳聚糖复合膜构建及表征[J]. 现代食品科技, 2020, 36(1): 106-112.
YAN L, GU L R, LAI F R, et al.Development and Characterization of Antibacterial Chitosan Composite Films Incorporated with Gliadin-Coated AgNPs[J]. Modern Food Science and Technology, 2020, 36(1): 106-112.
[33] ZHAO Z Y, LI P J, CAO X Y, et al.Novel Strategies for the Preparation of Nano-Silver Pectin Sponge Composite and Its Antibacterial Properties[J]. Cellulose, 2023, 30(15): 9425-9437.
[34] ZHOU Y, WU W N, WANG L X, et al.Multifunctional Pectin Films Based on Mussel-Inspired Modified 2D Ag Nanosheets for Long-Lasting Antibacterial and Enhanced Barrier Properties[J]. Food Hydrocolloids, 2023, 137: 108331.
[35] 张金丽, 陈子和, 陈燕婷, 等. Ag NPs改性鱼鳞明胶-琼脂复合膜的制备及性能[J]. 精细化工, 2020, 37(12): 2496-2503.
ZHANG J L, CHEN Z H, CHEN Y T, et al.Preparation and Properties of Nanoparticles Modified Fish Scale Gelatin-Agar Composite Films Silver[J]. Fine Chemicals, 2020, 37(12): 2496-2503.
[36] SUNDAREVA YU A, DUMINA I S, SALOMATINA E V, et al.Properties of Chitosan Films Modified with TiO2 Nanoparticles Promising as Biodegradable Food Packaging[J]. Journal of Physics: Conference Series, 2024, 2845(1): 012035.
[37] 胡子聪, 胡春, 周晨光. 智能包装在食品质量监测中的应用研究进展[J]. 包装工程, 2025, 46(11): 128-139.
HU Z C, HU C, ZHOU C G.Research Progress on Application of Intelligent Packaging in Food Quality Monitoring[J]. Packaging Engineering, 2025, 46(11): 128-139.
[38] JIANG G Y, YANG Y C, SHENG W Y, et al.Preparation and Characterization of Κ-Carrageenan/Dextran Films Blended with Nano-ZnO and Anthocyanin for Intelligent Food Packaging[J]. International Journal of Biological Macromolecules, 2024, 282: 137203.
[39] 韦阿飞, 李秋怡, 冯雪梦, 等. 壳聚糖/紫山药花青素/纳米氧化锌pH响应智能复合膜制备及性能研究[J]. 中国塑料, 2024, 38(10): 16-22.
WEI A F, LI Q Y, FENG X M, et al.Preparation and Performance of Chitosan/Purple Yam Anthocyanin/ZnO Nanoparticles Composites as pH-Responsive Smart Films[J]. China Plastics, 2024, 38(10): 16-22.
[40] HUANG X P, WANG F F, HU W K, et al.Smart Packaging Films Based on Corn Starch/Polyvinyl Alcohol Containing Nano SIM-1 for Monitoring Food Freshness[J]. International Journal of Biological Macromolecules, 2024, 256: 128373.
[41] HE J T, PENG Q, WANG J J, et al.An Intelligent Thymol/Alizarin-Loaded Polycaprolactone/Gelatin/Zein Nanofibrous Film with pH-Responsive and Antibacterial Properties for Shrimp Freshness Monitoring and Preservation[J]. Food Chemistry, 2025, 471: 142812.
[42] ZOU Y C, SUN Y F, SHI W J, et al.Dual-Functional Shikonin-Loaded Quaternized Chitosan/Polycaprolactone Nanofibrous Film with pH-Sensing for Active and Intelligent Food Packaging[J]. Food Chemistry, 2023, 399: 133962.
[43] MADBOULY A, MORSY M, MOUSTAFA H.Utilization of Torrefied Date Stones with Synthesized TiO2 Nanoparticles for Promoting Humidity Sensing of PVA/PVP Nanocomposites for Smart Food Packaging and Biomedical Applications[J]. Ceramics International, 2024, 50(20): 38522-38531.
[44] LIM S, GUNASEKARAN S, IMM J Y.Gelatin-Templated Gold Nanoparticles as Novel Time-Temperature Indicator[J]. Journal of Food Science, 2012, 77(9): N45-N49.
[45] HU X J, ZHANG H, WANG Y T, et al.Synergistic Antibacterial Strategy Based on Photodynamic Therapy: Progress and Perspectives[J]. Chemical Engineering Journal, 2022, 450: 138129.
[46] NIU P Y, DAI J L, WANG Z Y, et al.Sensitization of Antibiotic-Resistant Gram-Negative Bacteria to Photodynamic Therapy via Perfluorocarbon Nanoemulsion[J]. Pharmaceuticals, 2022, 15(2): 156.
[47] LIN K, ZHU Y Z, MA H W, et al.Preparation, Characterization, and Application of Gallic Acid-Mediated Photodynamic Chitosan-Nanocellulose-Based Films[J]. International Journal of Biological Macromolecules, 2024, 277: 134008.
[48] CAI P F, LI J, WU X B, et al.ALD-Induced TiO2/Ag Nanofilm for Rapid Surface Photodynamic Ion Sterilization[J]. Rare Metals, 2022, 41(12): 4138-4148.
[49] XU J R, WANG F, ZHAN J L, et al.Construction of TiO2/Starch Nanocomposite Cryogel for Ethylene Removal and Banana Preservation[J]. Carbohydrate Polymers, 2023, 312: 120825.
[50] PAL R.Rheology of Simple and Multiple Emulsions[J]. Current Opinion in Colloid & Interface Science, 2011, 16(1): 41-60.
[51] KLYMCHENKO A S, LIU F, COLLOT M, et al.Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine[J]. Advanced Healthcare Materials, 2021, 10(1): 2001289.
[52] ZHANG Y F, BO S W, FENG T, et al.A Versatile Theranostic Nanoemulsion for Architecture-Dependent Multimodal Imaging and Dually Augmented Photodynamic Therapy[J]. Advanced Materials, 2020, 32(28): 2003128.
[53] CHANG E L, BU J C, DING L L, et al.Porphyrin-Lipid Stabilized Paclitaxel Nanoemulsion for Combined Photodynamic Therapy and Chemotherapy[J]. Journal of Nanobiotechnology, 2021, 19(1): 154.
[54] 方强胜. 包覆光敏剂纳米杀菌乳液的稳定性能及杀菌性能研究[D]. 长春: 吉林大学, 2022.
FANG Q S.Study on Stability and Bactericidal Performance of Nano-Bactericidal Emulsion Coated with Photosensitizer[D]. Changchun: Jilin University, 2022.
[55] 王雅倩. 乳清蛋白-硫酸葡聚糖包埋姜黄素纳米乳液介导的光动力杀菌技术研究[D]. 武汉: 华中农业大学, 2023.
WANG Y Q.Study on Photodynamic Sterilization Technology Mediated by Whey Protein-Dextran Sulfate Embedded Curcumin Nanoemulsion[D]. Wuhan: Huazhong Agricultural University, 2023.
[56] ZHUANG H, JIANG X Y, WU S J, et al.Construction, Stability and Photodynamic Germicidal Efficacy of Curcumin Nanoemulsion Stabilised with Maillard Conjugate of Wpi-Rha[J]. International Journal of Food Science & Technology, 2022, 57(3): 1609-1620.
[57] JIAO L, LI Y W, HU J J, et al.Curcumin-Loaded Food-Grade Nano-Silica Hybrid Material Exhibiting Improved Photodynamic Effect and Its Application for the Preservation of Small Yellow Croaker (Larimichthys Polyactis)[J]. Food Research International, 2024, 188: 114492.
[58] LIU Y C, ZHENG M, XIE Z G.Chiral Organic Nanoparticles Based Photodynamic Antibacterial Films for Food Preservation[J]. Chemical Engineering Journal, 2024, 486: 150361.
[59] ZHAO Q, CHEN L Y, LU D, et al.Triple Synergistic Sterilization of Prussian Blue Nanoparticle-Doped Chitosan/Gelatin Packaging Film for Enhanced Food Preservation[J]. International Journal of Biological Macromolecules, 2024, 278: 134606.
[60] ZHUANG D, LI R, ZHANG M Z, et al.Photodynamic-Responsive Gelatin-Based Coating with High Utilization Curcumin Loaded Bilayer Nanoencapsulation: A Promising Environmental Food Packaging[J]. International Journal of Biological Macromolecules, 2024, 256: 128476.
[61] WENG J Y, CAI J H, LUO J W, et al.Photodynamic Antimicrobial Nanocellulose-Based Paper with Direct Z-Scheme Heterojunction for Fruit Freshkeeping[J]. Chemical Engineering Journal, 2025, 508: 161067.
[62] XU Z Q, WANG X H, LIU X M, et al.Tannic Acid/Fe3+/Ag Nanofilm Exhibiting Superior Photodynamic and Physical Antibacterial Activity[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39657-39671.
[63] CAI P F, LI J, WU X B, et al.ALD-Induced TiO2/Ag Nanofilm for Rapid Surface Photodynamic Ion Sterilization[J]. Rare Metals, 2022, 41(12): 4138-4148.
[64] WANG M Z, ZENG L, CHEN H J, et al.Antibacterial Properties of Folic Acid-Based Hydrogel Loaded with CeCDs and Its Potential Application in Food Preservation[J]. Food Chemistry, 2025, 481: 144031.
[65] FENG J X, GUO Z Q, LI R L, et al.Visible Light-Responsive Vitamin B2 Functionalized ZnO with Dual-Mechanism Bactericidal Effects for Perishable Agrofood Preservation[J]. Chemical Engineering Journal, 2024, 496: 154209.
[66] 扈莹莹, 李其轩, 刘昊天, 等. 纳米二氧化钛光催化技术抑菌机制及其在食品包装中的应用研究进展[J]. 食品科学, 2020, 41(3): 232-238.
HU Y Y, LI Q X, LIU H T, et al.Bactericidal Mechanism of Nano-Titanium Dioxide Photocatalysis Technology and Its Application in Food Packaging: A Literature Review[J]. Food Science, 2020, 41(3): 232-238.
[67] 朱文慧, 谭桂芝, 吕月月, 等. 光催化技术对牡蛎肉杀菌效果及品质的影响[J]. 中国食品学报, 2023, 23(5): 202-212.
ZHU W H, TAN G Z, LYU Y Y, et al.Effect of Photocatalytic Technology on Sterilization and Quality of Oyster Meat[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(5): 202-212.
[68] TRAN K M, KIM J, et al.Blue TiO2-Based Photocatalysis under Ambient Indoor Light for Prolonged Food Storage[J]. ACS Applied Bio Materials, 2025, 8(3): 2506-2518.
[69] 王超, 杨子明, 何祖宇, 等. 乙烯清除剂在果蔬保鲜中的研究进展[J]. 保鲜与加工, 2022, 22(9): 82-88.
WANG C, YANG Z M, HE Z Y, et al.Research Progress of Ethylene Scavengers for the Preservation of Fruits and Vegetables[J]. Storage and Process, 2022, 22(9): 82-88.
[70] KAEWKLIN P, SIRIPATRAWAN U, SUWANAGUL A, et al.Active Packaging from Chitosan-Titanium Dioxide Nanocomposite Film for Prolonging Storage Life of Tomato Fruit[J]. International Journal of Biological Macromolecules, 2018, 112: 523-529.
[71] HSIAO C J, LIN J F, WEN H Y, et al.Enhancement of the Stability of Chlorophyll Using Chlorophyll-Encapsulated Polycaprolactone Microparticles Based on Droplet Microfluidics[J]. Food Chemistry, 2020, 306: 125300.
[72] 谢晶, 陆文轩, 许天胜, 等. 声动力技术及声敏剂在食品杀菌中的应用[J]. 中国食品学报, 2025, 25(6): 1-13.
XIE J, LU W X, XU T S, et al.Application of Sonodynamic Technology and Sonosensitizers in Food Sterilization[J]. Chinese Journal of Food Science, 2025, 25(6): 1-13.
[73] 杨怡静, 张佳雯, 林少玲, 等. 姜黄素介导下声光动力联合处理对百香果汁贮藏品质的影响[J]. 轻工学报, 2025, 40(3): 19-27.
YANG Y J, ZHANG J W, LIN S L, et al.The Influence of Curcumin-Mediated Sono-Photodynamic Treatment on the Storage Quality of Passion Fruit Juice[J]. Journal of Light Industry, 2025, 40(3): 19-27.
[74] ZHANG J J, ZHANG J N, ZHANG R J, et al.Preparation of Photodynamic-Controlled Release Packaging for Pork Preservation and Its Visualization[J]. Food Chemistry, 2025, 473: 143005.
[75] AN X F, LIU Y H, SUN Y X, et al.Portable Multifunctional Sensing Platform for Ratiometric H2O2 Detection and Photodynamic Anti-Bacteria Using an AIE-Featured Electrospinning Film[J]. Chemical Engineering Journal, 2024, 487: 150675.
[76] YANG H, WANG M X, MA X, et al.Utilizing Curcumin-Mediated Blue Light Photodynamic Inactivation for Vibrio Vulnificus Control and Quality Preservation of Cynoglossus Semilaevis[J]. Food Research International, 2025, 214: 116648.
[77] RAHMANIFARAH K, MAHMOUDIAN M, MAHMOUDI ESKANDARABADI S.Fish Active Packaging with ZnO/Fe-MMT Nanoparticles[J]. Scientific Reports, 2025, 15(1): 3623.
[78] BABAEI S, MOJARRAD M, ROSHANZAMIR T, et al.Enhancing the Shelf Life of White Leg Shrimp (Litopenaeus Vannamei) Coated with Alginate/Gelatin Incorporated with Zinc Oxide Nanoparticles during Refrigerator Storage[J]. Journal of Food Measurement and Characterization, 2024, 18(8): 6829-6842.
[79] ZHENG S Z, YAN H, DENG P W, et al.Enhancement of Curcumin-Mediated Photodynamic Inactivation Against Pseudomonas Fluorescens on Fish Fillets Combined with Ε-Polylysine Hydrochloride[J]. LWT, 2025, 217: 117344.
[80] CHEN H M, ZHOU Q, HUANG L J, et al.Curcumin-Mediated Photodynamic Treatment Extends the Shelf Life of Salmon (Salmo Salar) Sashimi during Chilled Storage: Comparisons of Preservation Effects with Five Natural Preservatives[J]. Food Research International, 2023, 173: 113325.
[81] WANG J Y, ZHOU S F, LU F T, et al.Polyphenols Functionalized MOF Encapsulated BPQDS for Synergistic Photothermal/Photodynamic Antibacterial Properties and Multifunctional Food Preservation[J]. Food Chemistry, 2024, 451: 139451.
[82] XIA F, CHEN S X, HUANG H, et al.Novel Visible-Light-Driven Antibacterial Film Grafted with 3, 3, 4, 4-Benzophenone Tetracarboxylic Acid (BPTCA) for Chilled Meats Preservation[J]. Food Bioscience, 2024, 62: 105350.
[83] SASIDHARAN S, TEY L H, DJEARAMANE S, et al.Innovative Use of Chitosan/ZnO NPs Bio-Nanocomposites for Sustainable Antimicrobial Food Packaging of Poultry Meat[J]. Food Packaging and Shelf Life, 2024, 43: 101298.
[84] CHEN L Y, LI X M, CHEN J Y, et al.Formulation with Zinc Acetate Enhances Curcumin’s Inherent and Photodynamic Antimicrobial Effects for Food Preservation[J]. Food Control, 2024, 157: 110200.
[85] WU J R, LI J, XU F, et al.Effective Preservation of Chilled Pork Using Photodynamic Antibacterial Film Based on Curcumin-β-Cyclodextrin Complex[J]. Polymers, 2023, 15(4): 1023.
[86] LI F, ZHE T T, MA K X, et al.A Naturally Derived Nanocomposite Film with Photodynamic Antibacterial Activity: New Prospect for Sustainable Food Packaging[J]. ACS Applied Materials & Interfaces, 2021, 13(44): 52998-53008.
[87] GAO X Q, CAO L L, WANG L L, et al.Z-Scheme Heterojunction G-C3N4-TiO2 Reinforced Chitosan/Poly(vinyl alcohol) Film: Efficient and Recyclable for Fruit Packaging[J]. International Journal of Biological Macromolecules, 2024, 268: 131627.
[88] WANG Y, ZHAO Y L, WU R R, et al.Photodynamic Inactivation of Curcumin Combined with Ascorbic Acid Against Penicillium Italicum in Vitro and on Fresh-Cut Orange[J]. LWT, 2023, 182: 114900.
[89] LIU H, YANG Q, GU R, et al.Photocatalytic-Antimicrobial G-C3N4/PVA Films for Fruit Preservation[J]. Journal of Food Engineering, 2026, 403: 112738.
[90] WAHYUNI L S, NURYONO N, HATMANTO A D.Optimizing Banana Preservation with Bandgap-Dependent Curcumin-Modified Cu-Doped-ZnO Nanoparticles in Chitosan Edible Coatings[J]. Surfaces and Interfaces, 2025, 61: 106104.
[91] SHEN Y F, MA W P, MA R H, et al.Curcumin-Mediated Photodynamic Treatment Enhances Storage Quality of Fresh Wolfberries via Antioxidant System Modulation[J]. Foods, 2025, 14(16): 2843.
[92] LIU B Z, WANG K, SUN F F, et al.Carbon Dots and Cellulose Nanocrystal-Incorporated Chitosan Composite Films with Enhanced Gas Selectivity and Photodynamic Antibacterial Properties for Fruit Preservation[J]. Carbohydrate Polymers, 2025, 356: 123413.
[93] IQBAL S Z, WASEEM M, ZIA K M, et al.Application of Chitosan, Zinc Oxide Nanoparticles, and Aloe Vera Gel Edible Coating for the Extension in Shelf Life of Tomatoes[J]. Food Packaging and Shelf Life, 2025, 50: 101570.
[94] LI S Y, FANG C L, WEI N, et al.Antimicrobial, Antioxidative, and UV-Blocking Pectin/Gelatin Food Packaging Films Incorporated with Tannic Acid and Silver Nanoparticles for Strawberry Preservation[J]. International Journal of Biological Macromolecules, 2025, 308: 142445.
[95] CHONG L, GHATE V, SEAH C, et al.Photosensitization Can Be an Effective Risk-Reduction Strategy Against the Post-Baking Mold Spoilage of Bread[J]. Food Microbiology, 2024, 117: 104390.
[96] MOE N C, BASBASAN A Jr, WINOTAPUN C, et al.Application of Lignin Nanoparticles in Polybutylene Succinate Based Antifungal Packaging for Extending the Shelf Life of Bread[J]. Food Packaging and Shelf Life, 2023, 39: 101127.
[97] SARAIVA B B, DA SILVA SOUZA CAMPANHOLI K, MACHADO R R B, et al. Reducing Pseudomonas Fluorescens in Milk through Photodynamic Inactivation Using Riboflavin and Curcumin with 450 nm Blue Light-Emitting Diode[J]. International Dairy Journal, 2024, 148: 105787.
[98] SARAIVA B B, RODRIGUES B M, DA SILVA R C Jr, et al. Photodynamic Inactivation of Pseudomonas Fluorescens in Minas Frescal Cheese Using Curcumin as a Photosensitizer[J]. LWT, 2021, 151: 112143.
[99] CUI H Y, YANG Y R, AZIZ T, et al.Exploring the Potential of Chlorogenic Acid/Chitosan Nanoparticle-Loaded Edible Films with Photodynamic Technology for Mongolian Cheese Application[J]. International Journal of Biological Macromolecules, 2024, 279: 135091.
[100] INCORONATO A L, CONTE A, BUONOCORE G G, et al.Agar Hydrogel with Silver Nanoparticles to Prolong the Shelf Life of Fior Di Latte Cheese[J]. Journal of Dairy Science, 2011, 94(4): 1697-1704.
[101] FONSECA J, CANO-SARABIA M, CORTÉS P, et al. Metal-Organic Framework-Based Antimicrobial Touch Surfaces to Prevent Cross-Contamination[J]. Advanced Materials, 2024: 2403813.
[102] NGUYEN V N, ZHAO Z, TANG B Z, et al.Organic Photosensitizers for Antimicrobial Phototherapy[J]. Chemical Society Reviews, 2022, 51(9): 3324-3340.
[103] BUTLER J, HANDY R D, UPTON M, et al.Review of Antimicrobial Nanocoatings in Medicine and Dentistry: Mechanisms of Action, Biocompatibility Performance, Safety, and Benefits Compared to Antibiotics[J]. ACS Nano, 2023, 17(8): 7064-7092.
[104] YOUNG H, HE Y X, JOO B, et al.Toward the Scalable, Rapid, Reproducible, and Cost-Effective Synthesis of Personalized Nanomedicines at the Point of Care[J]. Nano Letters, 2024, 24(3): 920-928.
[105] WATTS S, GONTSARIK M, LASSENBERGER A, et al.Scalable Synthesis of Self-Disinfecting Polycationic Coatings for Hospital Relevant Surfaces[J]. Advanced Materials Interfaces, 2023, 10(8): 2202299.
[106] ZHANG L, LI S, TANG F, et al.Preparation of Silver Nanoparticles through the Reduction of Straw-Extracted Lignin and Its Antibacterial Hydrogel[J]. International Journal of Minerals, Metallurgy and Materials, 2025, 32(2): 504-514.
[107] HAO Z N, WANG M B, CHENG L, et al.Synergistic Antibacterial Mechanism of Silver-Copper Bimetallic Nanoparticles[J]. Frontiers in Bioengineering and Biotechnology, 2024, 11: 1337543.
[108] LIN Z X, LIU H, RICHARDSON J J, et al.Metal-Phenolic Network Composites: From Fundamentals to Applications[J]. Chemical Society Reviews, 2024, 53(22): 10800-10826.
PDF(6634 KB)

Accesses

Citation

Detail

Sections
Recommended

/