Ink Key Motor Control System Based on Improved Super Twisting Sliding Mode

FAN Yaomiao, YANG Mei, GAO Gang, CHEN Haopeng, ZHOU Yu, LIU Yichao

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (19) : 239-246.

PDF(627 KB)
PDF(627 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (19) : 239-246. DOI: 10.19554/j.cnki.1001-3563.2025.19.025
Automatic and Intelligent Technology

Ink Key Motor Control System Based on Improved Super Twisting Sliding Mode

  • FAN Yaomiaoa,b,c, YANG Meia,b,c*, GAO Ganga,b,c, CHEN Haopenga,b,c, ZHOU Yua,b,c, LIU Yichaoa,b,c
Author information +
History +

Abstract

The work aims to design a super-helical sliding mode control system based on particle swarm optimization (PSO) to deal with the problems of time-varying parameters and load perturbation in the control of ink key motors of offset printing machines. The principle of ink key control was analyzed. A mathematical model of brushless DC motors (BLDC) was established. A nonlinear gain super-helical sliding mode controller was designed, and the PSO algorithm was adopted to optimize the improved nonlinear gain super-helical sliding mode parameters offline globally. The stability of the optimized system was proved according to the Lyapunov stability theory. The simulation system of ink key motor control with a brushless DC motor as the actuator was built. The results of simulation experiments showed that the stability of the optimized system was improved and the response time was shortened by 12.5%-81.68% compared with other control algorithms under the change of external conditions. The method combined intelligent optimization of control parameters with improved sliding mode technology, which gave the system better accuracy and stability. Taking the offset printing machine as the starting point, the particle swarm optimization method and the improved super-helical sliding mode control are combined together and introduced into the ink-key motor control system of the offset printing machine, and after the research and simulation experiments, the performance of the ink-key motor control of the offset printing machine is improved, which provides a new attempt for the intelligent control of the printing equipment.

Key words

ink key control / offset printing machine / PSO / STSMC / BLDC

Cite this article

Download Citations
FAN Yaomiao, YANG Mei, GAO Gang, CHEN Haopeng, ZHOU Yu, LIU Yichao. Ink Key Motor Control System Based on Improved Super Twisting Sliding Mode[J]. Packaging Engineering. 2025, 46(19): 239-246 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.025

References

[1] 冯彩银, 朱龙彪, 沈祖军, 等. 基于STM32的遥控墨斗系统设计[J]. 包装工程, 2022, 43(3): 244-251.
FENG C Y, ZHU L B, SHEN Z J, et al.Design of Remote Control Ink Fountain System Based on STM32[J]. Packaging Engineering, 2022, 43(3): 244-251.
[2] 魏峰. 印刷机墨斗控制系统设计[D]. 北京: 北京印刷学院, 2015: 1-4.
WEI F.Decision of Ink Fountain Control System of the Printing Press[D]. Beijing: Beijing Institute of Graphic Communication, 2015: 1-4.
[3] 戚壮, 张文莲, 王美琪, 等. 分数阶PID扭矩控制在边驱耦合轻轨车辆的应用研究[J]. 自动化学报, 2020, 46(3): 482-494.
QI Z, ZHANG W L, WANG M Q, et al.Study for the Application of Fractional Order PID Torque Control in Side-Drive Coupled Tram[J]. Acta Automatica Sinica, 2020, 46(3): 482-494.
[4] 黄依婷, 房钰超, 王云冲, 等. 永磁同步电机伺服控制(连载之二)模糊逻辑速度控制[J]. 微电机, 2022, 55(9): 1-6.
HUANG Y T, FANG Y C, WANG Y C, et al.Servo Control of Permanent Magnet Synchronous Motor (Part 2): Fuzzy Logic Speed Control[J]. Micromotors, 2022, 55(9): 1-6.
[5] 于丰铭, 刘军. 基于改进RBF神经网络的永磁同步电机弱磁控制[J]. 组合机床与自动化加工技术, 2025(1): 99-103.
YU F M, LIU J.Field Weakening Operation Control of PMSM Based on Improved RBF Neural Network[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2025(1): 99-103.
[6] 付海明, 黄兴元, 邱光军, 等. 基于模糊PID的螺旋加料机构粉体进料精度控制[J]. 包装工程, 2023, 44(23): 164-170.
FU H M, HUANG X Y, QIU G J, et al.Powder Feeding Accuracy Control of Screw Feeding Mechanism Based on Fuzzy PID[J]. Packaging Engineering, 2023, 44(23): 164-170.
[7] 金爱娟, 陈昌泽, 李少龙. 基于神经网络优化的交流自抗扰伺服系统控制[J]. 包装工程, 2021, 42(19): 220-231.
JIN A J, CHEN C Z, LI S L.Control of AC ADRC Servo System Optimized Based on Neural Network[J]. Packaging Engineering, 2021, 42(19): 220-231.
[8] 金爱娟, 冯雅茹, 李少龙. 基于改进樽海鞘群算法的PMSM变论域模糊控制[J]. 包装工程, 2022, 43(13): 264-274.
JIN A J, FENG Y R, LI S L.Variable Universe Fuzzy Control of PMSM Based on Improved SSA[J]. Packaging Engineering, 2022, 43(13): 264-274.
[9] 张会林, 王帅, 张建平. 基于双模态有限时间滑模的永磁同步电机抗扰动控制[J]. 包装工程, 2024, 45(5): 188-196.
ZHANG H L, WANG S, ZHANG J P.Disturbance Rejection Control of Permanent Magnet Synchronous Motor Based on Dual-Mode Finite Time Sliding Mode[J]. Packaging Engineering, 2024, 45(5): 188-196.
[10] 陈再发, 刘彦呈. 基于超螺旋滑模变结构永磁同步电机的控制[J]. 电机与控制应用, 2017, 44(6): 19-23.
CHEN Z F, LIU Y C.Control of Permanent Magnet Synchronous Motor Based on Super Spiral Sliding Model Variable Structure[J]. Electric Machines & Control Application, 2017, 44(6): 19-23.
[11] 金爱娟, 王硕勋, 李少龙, 等. 基于改进超螺旋算法的永磁同步电动机控制[J]. 包装工程, 2022, 43(19): 198-207.
JIN A J, WANG S X, LI S L, et al.Control of Permanent Magnet Synchronous Motor Based on Improved Super Twisting Algorithm[J]. Packaging Engineering, 2022, 43(19): 198-207.
[12] 孙宁, 何延昭, 王贞艳. 基于超螺旋滑模自抗扰步进电机矢量控制[J]. 微电机, 2024, 57(12): 24-29.
SUN N, HE Y Z, WANG Z Y.Vector Control of Stepper Motor Based on Super-Twisting Sliding Mode Active Disturbance Rejection[J]. Micromotors, 2024, 57(12): 24-29.
[13] 宋昱霖, 李洪文, 邓永停. 永磁同步电机快速超螺旋滑模控制[J]. 控制工程, 2023, 30(1): 62-69.
SONG Y L, LI H W, DENG Y T.Fast Super Twisting Sliding Mode Control of Permanent Magnet Synchronous Motor[J]. Control Engineering of China, 2023, 30(1): 62-69.
[14] 季栋梁. 全自动化胶印墨斗系统[J]. 印刷杂志, 2010(3): 65-68.
JI D L.Fully Automatic Offset Printing Mo Dou System[J]. Printing Field, 2010(3): 65-68.
[15] 韩琨, 张长征, 袁雷. 基于超螺旋滑模扰动观测器的永磁同步电机无传感器抗干扰控制策略研究[J]. 包装工程, 2023, 44(3): 139-147.
HAN K, ZHANG C Z, YUAN L.Sensorless Anti-Disturbance Control Strategy of Permanent Magnet Synchronous Motor Based on Super-Twisting Sliding Mode Disturbance Observer[J]. Packaging Engineering, 2023, 44(3): 139-147.
[16] 代元涛. 基于改进超螺旋滑模的无刷直流电机控制策略研究[D]. 桂林: 桂林电子科技大学, 2024.
DAI Y T.Research on Control Strategy of Brushless DC Motor Based on Improved Super Twisting Sliding Mode[D]. Guilin: Guilin University of Electronic Technology, 2024.
[17] GDEY K L, CHOI W Y.Optimized Super-Twisting Sliding Mode Control with Parameter Estimation for Autonomous Vehicle Longitudinal Motion on Downhill Road[J]. Applied Sciences, 2025, 15(2): 981.
[18] 宋昱霖. 新能源汽车永磁同步电机驱动控制系统设计[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.
SONG Y L.Design of Permanent Magnet Synchronous Motor Drive Control System for New Energy Vehicles[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021.
[19] AHN J M, SON J C, LIM D K.Optimal Design of Outer-Rotor Surface Mounted Permanent Magnet Synchronous Motor for Cogging Torque Reduction Using Territory Particle Swarm Optimization[J]. Journal of Electrical Engineering & Technology, 2021, 16(1): 429-436.
PDF(627 KB)

Accesses

Citation

Detail

Sections
Recommended

/