Multi-objective Cold Chain Logistics Path Co-Optimization Driven by Minute-by-Minute Road Condition Dynamics

HAO Tongzheng, WANG Xunhong

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (19) : 184-197.

PDF(2822 KB)
PDF(2822 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (19) : 184-197. DOI: 10.19554/j.cnki.1001-3563.2025.19.020
Agro-products Preservation and Food Packaging

Multi-objective Cold Chain Logistics Path Co-Optimization Driven by Minute-by-Minute Road Condition Dynamics

  • HAO Tongzheng1, WANG Xunhong1,2*
Author information +
History +

Abstract

To address the issues of low delivery efficiency and insufficient multi-objective coordination optimization in cold chain logistics for fresh food e-commerce and pre-cooked meals under urban traffic congestion, the work aims to propose a multi-objective path optimization method that incorporates dynamic traffic conditions, so as to simultaneously improve economic efficiency, customer satisfaction, and product freshness. An optimization model was constructed based on real road networks, integrating traffic congestion indices and road resistance functions. With total cost (including carbon emissions), average customer satisfaction, and average cargo freshness as its multiple objectives, the CMME multi-objective evolutionary algorithm was enhanced. The SLHD was employed for population initialization, optimizing crossover and mutation operators, introducing adaptive strategies, and combining time-dependent A* algorithms to achieve minute-level dynamic path planning. In a real case study conducted at a company in Shenyang, the improved CMME outperformed the original algorithm and other comparison methods in benchmark tests based on IGD and HV metrics. The case study generated 41 Pareto solutions, with the optimal solution achieving a total cost of 1 245.20 yuan, customer satisfaction of 89.44%, and freshness of 94.27%. A carbon tax increase of 0.3 yuan/kg led to a 5.8% rise in total cost. Delaying departure time improved satisfaction, and the spoilage rate of goods significantly affected freshness. The proposed model effectively avoids congestion, and the improved algorithm demonstrates advantages in convergence, distribution, and computational efficiency. It provides decision support for time-sensitive logistics that balance economic, environmental, and service quality objectives, with relevant influencing factors also serving as reference criteria for decision-makers with multiple preferences.

Key words

cold chain logistics / path optimization / congestion index / time-dependent A* algorithm / CMME

Cite this article

Download Citations
HAO Tongzheng, WANG Xunhong. Multi-objective Cold Chain Logistics Path Co-Optimization Driven by Minute-by-Minute Road Condition Dynamics[J]. Packaging Engineering. 2025, 46(19): 184-197 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.020

References

[1] 余海燕, 林宇婷, 吴腾宇. 最小化期望成本的动态需求冷链配送路径优化研究[J]. 计算机工程与应用, 2025, 61(18): 347-357.
YU H Y, LIN Y T, WU T Y.Dynamic Cold Chain Delivery Route Optimization for Minimizing Expected Costs[J]. Computer Engineering and Applications, 2025, 61(18): 347-357.
[2] 李春发, 米新新, 崔鑫. 基于双曲正切函数改进蚁群算法的冷链物流配送路径优化[J]. 公路交通科技, 2023, 40(12): 236-244.
LI C F, MI X X, CUI X.Optimization of Cold Chain Logistics Distribution Routing Based on Improved Ant Colony Algorithm with Hyperbolic Tangent Function[J]. Journal of Highway and Transportation Research and Development, 2023, 40(12): 236-244.
[3] 马佳, 李楚连, 李桐言. 考虑新鲜度的生鲜冷链物流同时取送货车辆路径及求解算法[J]. 包装工程, 2025, 46(13): 269-279.
MA J, LI C L, LI T Y.Simultaneous Pickup-Delivery Vehicle Routing Problem for Fresh Cold Chain Logistics Considering Freshness and Solution Algorithm[J]. Packaging Engineering, 2025, 46(13): 269-279.
[4] 宾厚, 张路行, 王素杰, 等. 基于改进多目标遗传算法的农村低碳物流配送路径优化[J]. 中国农业大学学报, 2023, 28(7): 224-237.
BIN H, ZHANG L H, WANG S J, et al.Route Optimization of Rural Low-Carbon Logistics Based on Improved Multi-Objective Genetic Algorithm[J]. Journal of China Agricultural University, 2023, 28(7): 224-237.
[5] 吴暖, 代焕杰, 李季涛, 等. 考虑时间容忍度的冷链物流配送路径多目标优化[J]. 交通运输系统工程与信息, 2023, 23(2): 275-284.
WU N, DAI H J, LI J T, et al.Multi-Objective Optimization of Cold Chain Logistics Distribution Path Considering Time Tolerance[J]. Journal of Transportation Systems Engineering and Information Technology, 2023, 23(2): 275-284.
[6] 张力娅, 张锦, 肖斌. 考虑顾客优先级的多目标O2O外卖即时配送路径优化研究[J]. 工业工程与管理, 2021, 26(2): 196-204.
ZHANG L Y, ZHANG J, XIAO B.Multi-Objective O2O Take-out Instant Delivery Routing Optimization Considering Customer Priority[J]. Industrial Engineering and Management, 2021, 26(2): 196-204.
[7] 蒋丽, 王静, 梁昌勇, 等. 基于改进蚁群算法的众包配送路径研究[J]. 计算机工程与应用, 2019, 55(8): 244-249.
JIANG L, WANG J, LIANG C Y, et al.Research on Crowdsourcing Distribution Path Based on Improved Ant Colony Algorithm[J]. Computer Engineering and Applications, 2019, 55(8): 244-249.
[8] 林明秀, 初良勇, 王嘉宁, 等. 考虑不确定需求和混合车队的冷链物流联合配送路径优化[J/OL]. 计算机工程与应用, 2025: 1-13. (2025-03-19). https://kns.cnki.net/kcms/detail/11.2127.TP.20250318.2032.014.html.
LIN M X, CHU L Y, WANG J N, et al. Optimization of Joint Distribution Path of Cold Chain Logistics Considering Uncertain Demand and Mixed Fleet[J/OL]. Computer Engineering and Applications, 2025: 1-13. (2025-03-19). https://kns.cnki.net/kcms/detail/11.2127.TP.20250318.2032.014.html.
[9] 杨超, 张惠珍, 钱陇骏. 改进麻雀搜索算法求解多目标低碳冷链物流车辆路径问题[J]. 包装工程, 2024, 45(3): 251-261.
YANG C, ZHANG H Z, QIAN L J.Improved Sparrow Search Algorithm to Solve the Routing Problem of Multi-Objective Low-Carbon Cold Chain Logistics Vehicle[J]. Packaging Engineering, 2024, 45(3): 251-261.
[10] 叶恒舟, 甘国军, 董明刚. 基于混合变量差分进化算法的多目标电动车辆路径优化[J]. 桂林理工大学学报, 2025, 45(3): 426-432.
YE H Z, GAN G J, DONG M G.Multi-Objective Electric Vehicle Routing Optimization Based on Mixed-Variable Differential Evolution Algorithm[J]. Journal of Guilin University of Technology, 2025, 45(3): 426-432.
[11] 齐琳, 马良, 张惠珍. 改进樽海鞘算法求解低碳冷链多式联运路径优化问题[J]. 包装工程, 2025, 46(9): 196-202.
QI L, MA L, ZHANG H Z.Improved Salp Swarm Algorithm for Solving Low-Carbon Cold Chain Multimodal Vehicle Routing Problem[J]. Packaging Engineering, 2025, 46(9): 196-202.
[12] 贾现召, 戚恒亮, 贾其苏, 等. 实时路况下同城生鲜农产品配送路径优化[J]. 江苏农业科学, 2017, 45(17): 292-295.
JIA X Z, QI H L, JIA Q S, et al.Optimization of Distribution Path of Fresh Agricultural Products in the Same City under Real-Time Road Conditions[J]. Jiangsu Agricultural Sciences, 2017, 45(17): 292-295.
[13] 杨立君, 丁政罡, 左大发, 等. 区域时变路网下的低碳冷链配送路径优化研究[J]. 包装工程, 2025, 46(7): 212-223.
YANG L J, DING Z G, ZUO D F, et al.Low Carbon Distribution Path Optimization of Cold Chain Logistics Considering Regional Time-Varying Velocity[J]. Packaging Engineering, 2025, 46(7): 212-223.
[14] 姚源果, 贺盛瑜. 基于交通大数据的农产品冷链物流配送路径优化研究[J]. 管理评论, 2019, 31(4): 240-253.
YAO Y G, HE S Y.Research on Optimization of Distribution Route for Cold Chain Logistics of Agricultural Products Based on Traffic Big Data[J]. Management Review, 2019, 31(4): 240-253.
[15] 曹庆奎, 崔金超, 任向阳. 时变网络下多中心电动冷藏车配送路径优化[J]. 上海海事大学学报, 2024, 45(4): 32-38.
CAO Q K, CUI J C, REN X Y.Distribution Path Optimization of Multi-Center Electric Refrigerated Vehicles under Time-Varying Network[J]. Journal of Shanghai Maritime University, 2024, 45(4): 32-38.
[16] 白秦洋, 尹小庆, 林云. 考虑路网中实时交通的冷链物流路径优化[J]. 工业工程与管理, 2021, 26(6): 56-65.
BAI Q Y, YIN X Q, LIN Y.The Optimization of Cold Chain Logistics Route Considering Real-Time Traffic in Road Network[J]. Industrial Engineering and Management, 2021, 26(6): 56-65.
[17] 马成颖, 牟海波. 考虑路况、配送员与顾客满意度的冷链物流车辆配送路径优化方法[J]. 交通信息与安全, 2022, 40(5): 156-168.
MA C Y, MU H B.A Route Optimization Method for Cold Chain Logistics Vehicles Considering Road Conditions, Satisfaction of Deliverymen and Customers[J]. Journal of Transport Information and Safety, 2022, 40(5): 156-168.
[18] 仝自强, 李鹏翔. 考虑实时路况和车辆周转率的成品油配送路径优化研究[J]. 工业工程与管理, 2019, 24(2): 109-115.
TONG Z Q, LI P X.Vehicle Routing Problem of Refined Oil Distribution Considering Real-Time Traffic Condition and Vehicle Turnover Rate[J]. Industrial Engineering and Management, 2019, 24(2): 109-115.
[19] 王炜, 邓卫, 杨琪, 等. 公路网络规划建设与管理方法[M]. 2版. 北京: 科学出版社, 2006.
WANG W, DENG W, YANG Q. Highway Network Planning, Construction and Management Methods[M]. 2nd ed. Beijing: Science Press, 2006.
[20] ENGINEERING I D O C. Development and Application of a Highway Network Design Model[M]. Illinois: Northwestern University, 1973.
[21] HART P E, NILSSON N J, RAPHAEL B.A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107.
[22] MING F, GONG W Y, WANG L, et al.A Constrained Many-Objective Optimization Evolutionary Algorithm with Enhanced Mating and Environmental Selections[J]. IEEE Transactions on Cybernetics, 2023, 53(8): 4934-4946.
[23] YE K Q, LI W, SUDJIANTO A.Algorithmic Construction of Optimal Symmetric Latin Hypercube Designs[J]. Journal of Statistical Planning and Inference, 2000, 90(1): 145-159.
[24] RAI B K, SINGH N.Computer Experiments for Circuit Optimisation Using Symmetric Latin Hypercube Designs[J]. International Journal of Product Development, 2007, 4(5): 442.
[25] ZHOU Y R, XIANG Y, HE X Y.Constrained Multiobjective Optimization: Test Problem Construction and Performance Evaluations[J]. IEEE Transactions on Evolutionary Computation, 2020, 25(1): 172-186.
[26] MA Z W, WANG Y.Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(6): 972-986.
[27] JAIN H, DEB K.An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 602-622.
[28] PANICHELLA A.An Adaptive Evolutionary Algorithm Based on Non-Euclidean Geometry for Many-Objective Optimization[C]// Proceedings of the Genetic and Evolutionary Computation Conference. Prague: ACM, 2019.
[29] TIAN Y, CHENG R, ZHANG X Y, et al.An Indicator-Based Multiobjective Evolutionary Algorithm with Reference Point Adaptation for Better Versatility[J]. IEEE Transactions on Evolutionary Computation, 2017, 22(4): 609-622.
[30] ZITZLER E, DEB K, THIELE L.Comparison of Multiobjective Evolutionary Algorithms: Empirical Results[J]. Evolutionary Computation, 2000, 8(2): 173-195.
[31] DEB K, MOHAN M, MISHRA S.A Fast Multi-Objective Evolutionary Algorithm for Finding Well-Spread Pare-to- Optimal Solutions[J]. KanGAL Report, 2003(2): 1-18.
[32] 德新玲, 李萍, 杜学敏, 等. 基于遗传算法的沧州地区水产品运输路径优化研究[J]. 物流工程与管理, 2021, 43(1): 76-77.
DE X L, LI P, DU X M, et al.Study on Optimization of Aquatic Product Transportation Route in Cangzhou Area Based on Genetic Algorithm[J]. Logistics Engineering and Management, 2021, 43(1): 76-77.
[33] 王胜源, 王珍. 基于改进遗传算法的冷鲜肉配送路径优化研究[J]. 物流科技, 2025, 48(7): 15-19.
WANG S Y, WANG Z.Based on Improved Genetic Algorithm Research on Cold Fresh Meat Distribution Route Optimization[J]. Logistics Sci-Tech, 2025, 48(7): 15-19.
[34] 杨玮, 赵晶, 张堃, 等. 基于货架寿命的乳制品配送车辆路径优化研究[J]. 包装工程, 2019, 40(11): 72-79.
YANG W, ZHAO J, ZHANG K, et al.Path Optimization of Dairy Distribution Vehicle Based on Shelf Life[J]. Packaging Engineering, 2019, 40(11): 72-79.
[35] 张顺风, 徐步, 毛海军, 等. 考虑预冷延迟时间的预冷设施选址与路径优化[J]. 东南大学学报(自然科学版), 2025, 55(4): 1123-1130.
ZHANG S F, XU B, MAO H J, et al.Location and Route Optimization of Pre-Cooling Facilities Considering Pre-Cooling Delay Time[J]. Journal of Southeast University (Natural Science Edition), 2025, 55(4): 1123-1130.
PDF(2822 KB)

Accesses

Citation

Detail

Sections
Recommended

/