Research Progress on the Preparation of Biomass-based Janus Materials and Their Applications in the Food Field

ZHU Zhixin, ZHU Zhaokai, CAO Liming

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (19) : 107-116.

PDF(1278 KB)
PDF(1278 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (19) : 107-116. DOI: 10.19554/j.cnki.1001-3563.2025.19.013
Advanced Materials

Research Progress on the Preparation of Biomass-based Janus Materials and Their Applications in the Food Field

  • ZHU Zhixin, ZHU Zhaokai, CAO Liming*
Author information +
History +

Abstract

The work aims to address the limitation of traditional biomass materials with single functionality in food applications by developing multifunctional biomass-based materials through Janus structural design, offering innovative solutions for the functional upgrading of the food industry. Through literature research, the fundamental concepts and morphological types of Janus materials were reviewed, the potential of constructing Janus structures on biomass-based materials via Pickering emulsion, microfluidic technology, and electrospinning was explored, and their functional mechanisms and performance characteristics in three key application areas of toxin detection, food packaging, and smart indicator labels were analyzed. Biomass-based Janus materials, through structural design and functional integration, retain their inherent green attributes, such as renewability, biodegradability, and environmental friendliness, while simultaneously achieving key functional compatibility like hydrophilic-hydrophobic, adhesive-non-adhesive, and magnetic-fluorescent properties, thereby opening a new pathway for low-carbon transition and high-value development within the food industry. However, current research still faces challenges, including insufficient interfacial stability and relatively high production costs for large-scale manufacturing. Therefore, future studies should focus on an in-depth investigation of Janus interfacial interaction mechanisms and overcome the limitations hindering scalable production to promote the stable application of these materials within complex food systems and contribute to the sustainable development of the food industry.

Key words

biomass material / Janus material / preparation method / food application

Cite this article

Download Citations
ZHU Zhixin, ZHU Zhaokai, CAO Liming. Research Progress on the Preparation of Biomass-based Janus Materials and Their Applications in the Food Field[J]. Packaging Engineering. 2025, 46(19): 107-116 https://doi.org/10.19554/j.cnki.1001-3563.2025.19.013

References

[1] ZHAO Y Y, YU C M, LAN H, et al.Improved Interfacial Floatability of Superhydrophobic/Superhydrophilic Janus Sheet Inspired by Lotus Leaf[J]. Advanced Functional Materials, 2017, 27(27): 1701466.
[2] SÖZ Ç K, TROSIEN S, BIESALSKI M. Janus Interface Materials: A Critical Review and Comparative Study[J]. ACS Materials Letters, 2020, 2(4): 336-357.
[3] MCGLASSON A, MORGENTHALER E, BRADLEY L C, et al.On the Interfacial Assembly of Anisotropic Amphiphilic Janus Particles[J]. Advanced Functional Materials, 2024, 34(11): 2306651.
[4] LI Y, LIU F, DEMIRCI S, et al.Two Sides of the Coin: Synthesis and Applications of Janus Particles[J]. Nanoscale, 2025 17(1): 88-112.
[5] CAVAZZA A, MATTAROZZI M, FRANZONI A, et al.A Spotlight on Analytical Prospects in Food Allergens: From Emerging Allergens and Novel Foods to Bioplastics and Plant-Based Sustainable Food Contact Materials[J]. Food Chemistry, 2022, 388: 132951.
[6] SUN J B, XIN Y B, LI Z, et al.Rapid Preparation of Janus Biomass Evaporator by Dielectric Barrier Discharge Plasma for High-Efficiency Desalination and Wastewater Purification[J]. Chemical Engineering Journal, 2024, 484: 149669.
[7] GAO H P, ZHAO H Y, CHANG S Y, et al.Multi-Biomimetic Double Interlaced Wetting Janus Surface for Efficient Fog Collection[J]. Nano Letters, 2024, 24(25): 7774-7782.
[8] ZHOU R, JIN Y, ZENG W H, et al.Janus Hydrophobic Structural Gel with Asymmetric Adhesion in Air/Underwater for Reliable Mechanosensing[J]. Advanced Functional Materials, 2024, 34(33): 2316687.
[9] TONG H F, WANG J, QI L, et al.Starch-Based Janus Particle: Fabrication, Characterization and Interfacial Properties in Stabilizing Pickering Emulsion[J]. Carbohydrate Polymers, 2023, 313: 120867.
[10] WU Z Z, WANG L, BU N T, et al.All-Natural and Triple-Inspired Janus Electrospun Fibers with Integrated Functions for High-Performance Liquid Food Packaging[J]. Chemical Engineering Journal, 2024, 491: 151794.
[11] FAN X S, YANG J, LOH X J, et al.Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications[J]. Macromolecular Rapid Communications, 2019, 40(5): 1800203.
[12] YANG Q Y, LOOS K.Janus Nanoparticles Inside Polymeric Materials: Interfacial Arrangement Toward Functional Hybrid Materials[J]. Polymer Chemistry, 2017, 8(4): 641-654.
[13] LAMBERGER Z, ZAINUDDIN S, SCHEIBEL T, et al.Polymeric Janus Fibers[J]. ChemPlusChem, 2023, 88(2): e202200371.
[14] AFSARI M, SHON H K, TIJING L D.Janus Membranes for Membrane Distillation: Recent Advances and Challenges[J]. Advances in Colloid and Interface Science, 2021, 289: 102362.
[15] LI X S, CHEN L G, CUI D, et al.Preparation and Application of Janus Nanoparticles: Recent Development and Prospects[J]. Coordination Chemistry Reviews, 2022, 454: 214318.
[16] ZHANG X, FU Q R, DUAN H W, et al.Janus Nanoparticles: From Fabrication to (Bio)Applications[J]. ACS Nano, 2021, 15(4): 6147-6191.
[17] CAO X C, CHEN R, WANG Z S, et al.Microfluidic Spun Self-Healable Janus-Core Composite Microfibers as Smart Fiber Actuators[J]. ACS Applied Materials & Interfaces, 2025, 17(13): 20225-20235.
[18] WANG M L, YU D G, BLIGH S W A. Progress in Preparing Electrospun Janus Fibers and Their Applications[J]. Applied Materials Today, 2023, 31: 101766.
[19] CHAN D, LIU Y F, FAN Y, et al.Functional Janus Membranes: Promising Platform for Advanced Lithium Batteries and beyond[J]. Energy & Environmental Materials, 2023, 6(5): e12451.
[20] WANG Z G, CHEN Y, ZHANG N, et al.Plant Protein Nanogel-Based Patchy Janus Particles with Tunable Anisotropy for Perishable Food Preservation[J]. Food Frontiers, 2023, 4(2): 795-806.
[21] WU Z Z, WANG L, et al.Enhancing Waterproof Food Packaging with Janus Structure: Lotus Leaf Biomimicry and Polyphenol Particle Technology for Vegetable Preservation[J]. ACS Applied Materials & Interfaces, 2025, 17(5): 8248-8261.
[22] ZHU Z Z, MENG L N, GAO Z N, et al.Development of Chitosan/Polycaprolactone-Thymol Janus Films with Directional Transport and Antibacterial Properties for Meat Preservation[J]. International Journal of Biological Macromolecules, 2024, 268: 131669.
[23] KLOJDOVÁ I, STATHOPOULOS C.The Potential Application of Pickering Multiple Emulsions in Food[J]. Foods, 2022, 11(11): 1558.
[24] WU Y L, BAO Z P, ZHANG S H, et al.Salinity-Driven Interface Self-Assembly of a Biological Amphiphilic Emulsifier to Form Stable Janus Core-Shell Emulsion for Enhancing Agrichemical Delivery[J]. ACS Nano, 2024, 18(13): 9486-9499.
[25] LV H, YU D G, WANG M L, et al.Nanofabrication of Janus Fibers through Side-by-Side Electrospinning - a Mini Review[J]. Materials Highlights, 2021, 2(1): 18-22.
[26] JI Y, HAN C L, LIU E C, et al.Pickering Emulsions Stabilized by Pea Protein Isolate-Chitosan Nanoparticles: Fabrication, Characterization and Delivery EPA for Digestion in Vitro and in Vivo[J]. Food Chemistry, 2022, 378: 132090.
[27] WU J, MA G H.Recent Studies of Pickering Emulsions: Particles Make the Difference[J]. Small, 2016, 12(34): 4633-4648.
[28] BINKS B P, FLETCHER P D I. Particles Adsorbed at the Oil-Water Interface: a Theoretical Comparison between Spheres of Uniform Wettability and "Janus" Particles[J]. Langmuir, 2001, 17(16): 4708-4710.
[29] JIANG S, GRANICK S.Janus Balance of Amphiphilic Colloidal Particles[J]. The Journal of Chemical Physics, 2007, 127(16): 161102.
[30] ZHU X P, LI K R, LI J, et al.Physicochemical Properties and Antibacterial Property of Pickering Emulsion Stabilized by Smart Janus Nanospheres[J]. Food Chemistry, 2024, 451: 139413.
[31] DUAN Y P, ZHAO X, SUN M M, et al.Research Advances in the Synthesis, Application, Assembly, and Calculation of Janus Materials[J]. Industrial & Engineering Chemistry Research, 2021, 60(3): 1071-1095.
[32] NISISAKO T.Recent Advances in Microfluidic Production of Janus Droplets and Particles[J]. Current Opinion in Colloid & Interface Science, 2016, 25: 1-12.
[33] ZHANG H, SUN L Y, GUO J H, et al.Hierarchical Spinning of Janus Textiles with Anisotropic Wettability for Wound Healing[J]. Research, 2023, 6: 0129.
[34] LAN J W, CHEN J Y, LI N X, et al.Microfluidic Generation of Magnetic-Fluorescent Janus Microparticles for Biomolecular Detection[J]. Talanta, 2016, 151: 126-131.
[35] MORAGUES T, ARGUIJO D, BENEYTON T, et al.Droplet-Based Microfluidics[J]. Nature Reviews Methods Primers, 2023, 3(1): 32.
[36] 吕媛媛, 孟家光, 余灵婕, 等. 静电纺Janus敷料的研究进展[J]. 纺织工程学报, 2024, 13(6): 79-96.
LYU Y Y, MENG J G, YU L J, et al.Research Progress of Electrospun Janus Dressing[J]. Journal of Advanced Textile Engineering, 2024, 13(6): 79-96.
[37] JI D X, LIN Y G, GUO X Y, et al.Electrospinning of Nanofibres[J]. Nature Reviews Methods Primers, 2024, 4(1): 1.
[38] JIANG W L, DU Y T, HUANG C, et al.Electrospun Zein Nanofibers: From Food to Food[J]. ES Food & Agroforestry, 2023, 12(6): 863.
[39] CHO Y, BEAK J W, SAGONG M, et al.Electrospinning and Nanofiber Technology: Fundamentals, Innovations, and Applications (Adv. Mater. 28/2025)[J]. Advanced Materials, 2025, 37(28): 2570190.
[40] WANG M, LI D, LI J, et al.Electrospun Janus Zein-PVP Nanofibers Provide a Two-Stage Controlled Release of Poorly Water-Soluble Drugs[J]. Materials & Design, 2020, 196: 109075.
[41] SHI Z C, LIU L, CHEN H, et al.Preparation of Janus Film for Fog Water Collection via Layer-by-Layer Assembling of Nanocellulose and Nanochitin on PLA[J]. Carbohydrate Polymers, 2024, 323: 121369.
[42] YUAN L B, LIU R Q, ZHOU Y F, et al.Janus Biopolymer Nanocomposite Coating with Excellent Antibacterial and Water/Oxygen Barrier Performance for Fruit Preservation[J]. Food Hydrocolloids, 2024, 149: 109528.
[43] LV Y F, LI Q R, HOU Y T, et al.Facile Preparation of an Asymmetric Wettability Janus Cellulose Membrane for Switchable Emulsions' Separation and Antibacterial Property[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 15002-15011.
[44] LI Y E.Sustainable Biomass Materials for Biomedical Applications[J]. ACS Biomaterials Science & Engineering, 2019, 5(5): 2079-2092.
[45] HE H Z, ZHANG R Q, ZHANG P C, et al.Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications[J]. Advanced Science, 2023, 10(16): 2205557.
[46] LOU Z C, ZHANG Y, LI Y J, et al.Study on Microscopic Physical and Chemical Properties of Biomass Materials by AFM[J]. Journal of Materials Research and Technology, 2023, 24: 10005-10026.
[47] LIU Y F, MIAO Y F, HUANG Z, et al.A Lignin-Wood Janus Membrane with Three-Dimensional Interconnected Layered Micro/Nano Channels for On-Demand Separation of Surfactant-Stabilized Oil/Water Emulsions[J]. Desalination, 2025, 606: 118772.
[48] DUAN C, MA Q, MA R T, et al.A Bio-Based Janus Hydrogel from Cellulose and Lignin with Bilayer Structure and Asymmetric Adhesion for Accurate and Sensitive Human Motion Monitoring[J]. International Journal of Biological Macromolecules, 2025, 306: 141718.
[49] LI W, LI T T, DENG B Y, et al.Fabrication of a Facile Self-Floating Lignin-Based Carbon Janus Evaporators for Efficient and Stable Solar Desalination[J]. Advanced Composites and Hybrid Materials, 2024, 7(2): 52.
[50] YUAN Y, TANG Z Q, YANG Z H, et al.Lignin-Induced Rapid Polymerization of Asymmetrical Adhesion Janus Gel for Strain Sensor[J]. International Journal of Biological Macromolecules, 2024, 280: 135491.
[51] LIU X, ZHANG H J, XI S S, et al.Lignin-Based Ultrathin Hydrogel Coatings with Strong Substrate Adhesion Enabled by Hydrophobic Association[J]. Advanced Functional Materials, 2025, 35(3): 2413464.
[52] ZHANG M, YANG Q F, GAO M, et al.Fabrication of Janus Cellulose Nanocomposite Membrane for Various Water/Oil Separation and Selective One-Way Transmission[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106016.
[53] YUAN H M, HAO R, SUN H D, et al.Engineered Janus Cellulose Membrane with the Asymmetric-Pore Structure for the Superhigh-Water Flux Desalination[J]. Carbohydrate Polymers, 2022, 291: 119601.
[54] TANG F, LI S H, YU H Y, et al.Tailoring Commercial Cellulose Membranes into Janus Conductive Electronic Skin via Diffusion-Controlled Polymerization[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(47): 17458-17465.
[55] LI Y N, HUANG L L, HE Z B, et al.Advanced Nano-Fibrillated Cellulose/Modified MXene Janus Membrane for Continuous 24-h Water-Power Co-Generation[J]. Advanced Functional Materials, 2025, 35(33): 2502605.
[56] KNAPCZYK-KORCZAK J, ZHU J, URA D P, et al.Enhanced Water Harvesting System and Mechanical Performance from Janus Fibers with Polystyrene and Cellulose Acetate[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(1): 180-188.
[57] WEN S, JU X J, LIU W Y, et al.Ca-Alginate-Based Janus Capsules with a Pumping Effect for Intestinal-Targeted Controlled Release[J]. Engineering, 2023, 24: 114-125.
[58] LIU G T, ZHOU Y, XU Z J, et al.Janus Hydrogel with Dual Antibacterial and Angiogenesis Functions for Enhanced Diabetic Wound Healing[J]. Chinese Chemical Letters, 2023, 34(4): 107705.
[59] 毕云鹏. 海藻酸钠修饰Janus粒子的合成及其在Pickering乳液中的应用[D]. 沈阳: 辽宁大学, 2022.
BI Y P.Preparation of Janus Particles Modified by Sodium Alginate and Its Application in Pickering Emulsion[D]. Shenyang: Liaoning University, 2022.
[60] ANDO M, TSUCHIYA M, ITAI S, et al.Janus Hydrogel Microbeads for Glucose Sensing with pH Calibration[J]. Sensors, 2021, 21(14): 4829.
[61] ZHAN Y W, XING Y C, JI Q, et al.Strain-Sensitive Alginate/Polyvinyl Alcohol Composite Hydrogels with Janus Hierarchy and Conductivity Mediated by Tannic Acid[J]. International Journal of Biological Macromolecules, 2022, 212: 202-210.
[62] SHOREY R, SALAGHI A, FATEHI P, et al.Valorization of Lignin for Advanced Material Applications: A Review[J]. RSC Sustainability, 2024, 2(4): 804-831.
[63] MORENO A, SIPPONEN M H.Lignin-Based Smart Materials: A Roadmap to Processing and Synthesis for Current and Future Applications[J]. Materials Horizons, 2020, 7(9): 2237-2257.
[64] HUANG C X, PENG Z W, LI J J, et al.Unlocking the Role of Lignin for Preparing the Lignin-Based Wood Adhesive: A Review[J]. Industrial Crops and Products, 2022, 187: 115388.
[65] XU J Y, ZHANG M Y, SHAN Y T, et al.Advanced Biomass-Based Janus Materials: Classification, Preparation and Application: A Review[J]. International Journal of Biological Macromolecules, 2024, 265: 131085.
[66] AGUSTIANY E A, RASYIDUR RIDHO M, RAHMI D N M, et al. Recent Developments in Lignin Modification and Its Application in Lignin-Based Green Composites: A Review[J]. Polymer Composites, 2022, 43(8): 4848-4865.
[67] CUI M H, LI S Q, MA X Z, et al.Sustainable Janus Lignin-Based Polyurethane Biofoams with Robust Antibacterial Activity and Long-Term Biofilm Resistance[J]. International Journal of Biological Macromolecules, 2024, 256: 128088.
[68] LIU Y H, ZHANG Z W, WANG J G, et al.Janus-Structured Lignin Hydrogel Evaporator via Laser Direct Writing for High Efficiency Seawater Desalination and Solar Power Generation[J]. Chemical Engineering Journal, 2025, 513: 162853.
[69] SUBASI B G, XIAO J B, CAPANOGLUO E.Potential Use of Janus Structures in Food Applications[J]. eFood, 2021, 2(6): 279-287.
[70] LI K, CLARKSON C M, WANG L, et al.Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits[J]. ACS Nano, 2021, 15(3): 3646-3673.
[71] WANG Q Q, ZHOU R, SUN J Z, et al.Naturally Derived Janus Cellulose Nanomaterials: Anisotropic Cellulose Nanomaterial Building Blocks and Their Assembly into Asymmetric Structures[J]. ACS Nano, 2022, 16(9): 13468-13491.
[72] AGABA A, MARRIAM I, TEBYETEKERWA M, et al.Janus Hybrid Sustainable All-Cellulose Nanofiber Sponge for Oil-Water Separation[J]. International Journal of Biological Macromolecules, 2021, 185: 997-1004.
[73] XU Z, FAN J L, TIAN W G, et al.Cellulose-Based PH-Responsive Janus Dressing with Unidirectional Moisture Drainage for Exudate Management and Diabetic Wounds Healing[J]. Advanced Functional Materials, 2024, 34(3): 2307449.
[74] BI D C, YANG X, YAO L J, et al.Potential Food and Nutraceutical Applications of Alginate: A Review[J]. Marine Drugs, 2022, 20(9): 564.
[75] YAN P L, LAN W Q, XIE J.Modification on Sodium Alginate for Food Preservation: A Review[J]. Trends in Food Science & Technology, 2024, 143: 104217.
[76] LAI W F, HUANG E, LUI K H.Alginate‐Based Complex Fibers with the Janus Morphology for Controlled Release of Co-Delivered Drugs[J]. Asian Journal of Pharmaceutical Sciences, 2021, 16(1): 77-85.
[77] XUE J W, MA C Y, YANG S Q, et al.Janus Hydrogel Loaded with a CO2-Generating Chemical Reaction System: Construction, Characterization, and Application in Fruit and Vegetable Preservation[J]. Food Chemistry, 2024, 458: 140271.
[78] JASSON V, JACXSENS L, LUNING P, et al.Alternative Microbial Methods: An Overview and Selection Criteria[J]. Food Microbiology, 2010, 27(6): 710-730.
[79] LING Z M, XU Q, LI W Q, et al.Fluorescence Sensing and Effective Elimination of Listeria Monocytogenes in Food Based on Janus Gold Carbon Dots-Silver Nanoclusters Composites[J]. Food Bioscience, 2025, 65: 106003.
[80] GAO C, ZHANG W Q, GONG D, et al.Biotemplated Janus Magnetic Microrobots Based on Diatomite for Highly Efficient Detection of Salmonella[J]. ACS Applied Materials & Interfaces, 2024, 16(37): 49030-49040.
[81] DONG H, HAN S, MI K Q, et al.Asymmetric Janus Composite Films with Superior Humidity Regulation Capabilities for the Efficient Preservation of Strawberry Fruit[J]. Food Chemistry, 2025, 478: 143646.
[82] MA Z X, XING Z Y, ZHAO Y, et al.Lotus Leaf Inspired Sustainable and Multifunctional Janus Film for Food Packaging[J]. Chemical Engineering Journal, 2023, 457: 141279.
[83] FAN L S, CHEN Y H, ZENG Y W, et al.Application of Visual Intelligent Labels in the Assessment of Meat Freshness[J]. Food Chemistry, 2024, 460: 140562.
[84] FRANCO M R, DA CUNHA L R, BIANCHI R F. Janus Principle Applied to Food Safety: An Active Two-Faced Indicator Label for Tracking Meat Freshness[J]. Sensors and Actuators B: Chemical, 2021, 333: 129466.
PDF(1278 KB)

Accesses

Citation

Detail

Sections
Recommended

/