Development of Flexible S-band Electromagnetic Metamaterials and Their Application in Microwave Ablation

RUAN Hailing, WANG Tao, HONG Rutao

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (17) : 69-79.

PDF(8001 KB)
PDF(8001 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (17) : 69-79. DOI: 10.19554/j.cnki.1001-3563.2025.17.008
Special Topic on Lightweight Broadband Electromagnetic Composite Materials

Development of Flexible S-band Electromagnetic Metamaterials and Their Application in Microwave Ablation

  • RUAN Hailing1,2,3, WANG Tao4, HONG Rutao1,*
Author information +
History +

Abstract

To meet the needs of 2.45 GHz microwave ablation and S-band electromagnetic stealth applications, the work aims to develop a flexible S-band metamaterial absorber and measure its effect on phantom heating during microwave ablation. By using the design method that combined microwave equivalent circuit analysis with three-dimensional electromagnetic field analysis, the pattern layer was printed by organic conductive materials on an organic dielectric substrate to manufacture a metamaterial prototype. This metamaterial was then positioned around a phantom with a plane or curved configuration, and temperature changes at equidistant points inside the phantom during microwave ablation were measured. With a total thickness of only 8 mm, the absorber was measured in both plane and curved configurations, and its absorption rate in the S-band exceeded 80% and its energy absorption rate at 2.45 GHz was greater than 95%. Additionally, when the relative position between the metamaterial and the phantom changed, there was a significant difference in temperature changes in the phantom during microwave ablation, and the maximum temperature differences exceeded 10 °C at equidistant points. As a result, the metamaterial absorber significantly affects temperature changes at equidistant points in the phantom during microwave ablation, which is helpful for preventing carbonization and overtreatment. This advancement positively impacts the future of intelligent and conformal microwave ablation.

Key words

electromagnetic metamaterials / flexible absorber / S-band / microwave ablation / temperature change

Cite this article

Download Citations
RUAN Hailing, WANG Tao, HONG Rutao. Development of Flexible S-band Electromagnetic Metamaterials and Their Application in Microwave Ablation[J]. Packaging Engineering. 2025, 46(17): 69-79 https://doi.org/10.19554/j.cnki.1001-3563.2025.17.008

References

[1] LANDY N I, SAJUYIGBE S, MOCK J J, et al.Perfect Metamaterial Absorber[J]. Physical Review Letters, 2008, 100(20): 207402.
[2] CHANG C C, KORT-KAMP W J M, NOGAN J, et al. High-Temperature Refractory Metasurfaces for Solar Thermophotovoltaic Energy Harvesting[J]. Nano Letters, 2018, 18(12): 7665-7673.
[3] PARK C S, SHIN Y C, JO S H, et al.Two-Dimensional Octagonal Phononic Crystals for Highly Dense Piezoelectric Energy Harvesting[J]. Nano Energy, 2019, 57: 327-337.
[4] ZHANG Z L, ZHANG L, CHEN X Q, et al.Broadband Metamaterial Absorber for Low-Frequency Microwave Absorption in the S-Band and C-Band[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 166075.
[5] ALÙ A, MACI S, ENGHETA N.Metasurfaces and Metamaterials for Electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(7): 1-19.
[6] 李新羽, 张静远, 蔡子轩, 等. 可重构智能超表面辅助的非视距人体生命体征感知[J]. 电子学报, 2025, 53(1): 1-13.
LI X Y, ZHANG J Y, CAI Z X, et al.Non-Line-of-Sight Human Vital-Sign Sensing Aided by Reconfigurable Intelligent Surfaces[J]. Acta Electronica Sinica, 2025, 53(1): 1-13.
[7] 汤文轩, 崔铁军. 电磁超材料的发展与应用[J]. 光电子技术, 2024, 44(2): 85-93.
TANG W X, CUI T J.Development and Applications of Metamaterials[J]. Optoelectronic Technology, 2024, 44(2): 85-93.
[8] 杨昊, 徐逸凡, 石跃婷, 等. 三维螺旋超结构/介质的低频协同效应及其吸波蜂窝制备[J]. 包装工程, 2023, 44(23): 265-274.
YANG H, XU Y F, SHI Y T, et al.Low-Frequency Synergistic Effect of 3D Helical Metastructure/Medium and Preparation of Its Absorbing Honeycomb[J]. Packaging Engineering, 2023, 44(23): 265-274.
[9] YAN C M, SU M, LIU Y A, et al.Method for Designing Anisotropic Metamaterials with Required Electromagnetic Properties Based on Constitutive Parameters[J]. IEEE Transactions on Microwave Theory and Techniques, 2025, 72(7): 1-13.
[10] SMITH D R, SAZEGAR M, YOO I.Equivalence of Polarizability and Circuit Models for Waveguide-Fed Metamaterial Elements[J]. IEEE Transactions on Antennas and Propagation, 2025, 73(1): 7-21.
[11] LI Y Y, XU X W, YANG S Y, et al.An Improved Multi-Objective GA for Low-Frequency Metamaterial Unit Robust Optimization Under Uncertainty[J]. IEEE Transactions on Magnetics, 2025, 61(2): 7000605.
[12] 孔祥鲲, 孔令奇, 姜顺流, 等. 电磁超材料在超宽带雷达隐身微小卫星设计中的应用[J]. 宇航学报, 2021, 42(6): 775-782.
KONG X K, KONG L Q, JIANG S L, et al.Application of Electromagnetic Metamaterials in Design of Ultra-Wideband Radar Stealth Microsatellite[J]. Journal of Astronautics, 2021, 42(6): 775-782.
[13] 吴孟超, 陈汉, 陈夷, 等. 消融疗法在肝癌治疗中的作用[J]. 中国微创外科杂志, 2002, 2(S1): 3-5.
WU M C, CHEN H, CHEN Y, et al.The Role of Ablation Therapy in the Treatment of Liver Cancer[J]. Chinese Journal of Minimally Invasive Surgery, 2002, 2(S1): 3-5.
[14] 沈伟峰, 吴孟超. 肝癌局部消融的治疗进展[J]. 中国微创外科杂志, 2010, 10(2): 171-175.
SHEN W F, WU M C.Progress in Treatment of Local Ablation of Hepatocellular Carcinoma[J]. Chinese Journal of Minimally Invasive Surgery, 2010, 10(2): 171-175.
[15] 张雪花, 张潆化, 梁萍. 超声引导下微波消融治疗肝癌246例并发症分析[J]. 解放军医学院学报, 2015, 36(9): 883-885.
ZHANG X H, ZHANG Y H, LIANG P.Complications of Liver Cancer Patients Treated with Ultrasound- Guided Microwave Ablation: An Analysis of 246 Cases[J]. Academic Journal of Chinese PLA Medical School, 2015, 36(9): 883-885.
[16] 刘彬, 殷波, 徐靖, 等. 微波消融治疗良性甲状腺结节1928例临床分析[J]. 南昌大学学报(医学版), 2023, 63(1): 45-48.
LIU B, YIN B, XU J, et al.Microwave Ablation for Benign Thyroid Nodules: A Clinical Analysis of 1928 Cases[J]. Journal of Nanchang University (Medical Sciences), 2023, 63(1): 45-48.
[17] 渠文静. 初治原发性肝癌超声引导下经皮微波消融治疗术后并发症及疗效分析[D]. 长春: 吉林大学, 2024.
QU W J.Analysis of Postoperative Complications and Therapeutic Effects of Ultrasound-guided Percutaneous Microwave Ablation for Primary Liver Cancer with Initial Treatment[D]. Changchun: Jilin University, 2024.
[18] 刘征玉, 夏要友. 微波消融在肝脏恶性肿瘤中的应用及研究进展[J]. 中国现代医生, 2025, 63(13): 110-113.
LIU Z Y, XIA Y Y.Application and Research Progress of Microwave Ablation in Liver Malignant Tumor[J]. China Modern Doctor, 2025, 63(13): 110-113.
[19] WANG T, ZHAO G, QIU B S.Theoretical Evaluation of the Treatment Effectiveness of a Novel Coaxial Multi-Slot Antenna for Conformal Microwave Ablation of Tumors[J]. International Journal of Heat and Mass Transfer, 2015, 90: 81-91.
[20] 江汉保, 郝晋, 李爱华, 等. 微波体模[J]. 中国生物医学工程学报, 1992, 11(3): 199-203.
JIANG H B, HAO J, LI A H, et al.Microwave Phantom Muscle Tissue[J]. Chinese Journal of Biomedical Engineering, 1992, 11(3): 199-203.
[21] MA J J, HE Y, BIE Y Y, et al.Research Progress and Application of Fabric-Based Organic Electrochemical Transistors: A Review[J]. IEEE Sensors Journal, 2025, 25(4): 5903-5915.
[22] KALRAIYA S, CHAUDHARY R K, ABDALLA M A.Design and Analysis of Polarization Independent Conformal Wideband Metamaterial Absorber Using Resistor Loaded Sector Shaped Resonators[J]. Journal of Applied Physics, 2019, 125(13): 134904.
[23] BINDA P, SINGH R K, MITHARWAL R. An Ultra-Thin, Polarization Free Wide-Angle Stable Quad-Band Metamaterial Absorber for Applications in C, X, and Ku Bands[J]. AEU - International Journal of Electronics and Communications, 2023, 171: 154925.
[24] 刘慧慧, 吴宁, 高有增, 等. 基于定向微波天线消融邻近重要组织肝肿瘤的温度场仿真研究[J]. 北京生物医学工程, 2025, 44(3): 229-236.
LIU H H, WU N, GAO Y Z, et al.Temperature Field Simulation Study of Ablation of Liver Tumors Adjacent to Critical Tissues Based on Directional Microwave Antennas[J]. Beijing Biomedical Engineering, 2025, 44(3): 229-236.
PDF(8001 KB)

Accesses

Citation

Detail

Sections
Recommended

/