Review of Cellulose and Lignin in Advanced Functional Packaging Materials

TANG Shuhai, XU Xi, YANG Mingcong, ZHU Qi, CHEN Guangxue

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (15) : 72-85.

PDF(12209 KB)
PDF(12209 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (15) : 72-85. DOI: 10.19554/j.cnki.1001-3563.2025.15.008
Special Topic on Sustainable Packaging Technology Innovation and Industrial Development

Review of Cellulose and Lignin in Advanced Functional Packaging Materials

  • TANG Shuhai1, XU Xi1,2*, YANG Mingcong1*, ZHU Qi1, CHEN Guangxue2
Author information +
History +

Abstract

The work aims to explore the application potential of cellulose and lignin in biodegradable packaging materials, analyze their molecular characteristics, synergistic effects, and performance optimization pathways, and provide theoretical support for sustainable packaging development. Based on the literature from Web of Science, Scopus, and PubMed (2010-2025), 70+ studies were screened by key words "cellulose," "lignin," and "biodegradable packaging." A thematic analysis was conducted to examine extraction, modification, and composite technologies, comparing effects of nanocomposite and chemical crosslinking strategies on the material performance, while critically summarizing technical bottlenecks. Cellulose/lignin synergy significantly enhanced the material performance. Composite films achieved 81.8% UV-C shielding efficiency and nearly 100% antibacterial activity. Nanocomposite technology improved mechanical strength (dry/wet tensile strength +218%/+233%) and barrier properties (oxygen permeability: (4.15±0.13)×10-20 m3/(m2·s·Pa)). Lignin enhanced hydrophobicity (water contact angle >80°) and thermal stability (decomposition temperature +20%). Dissolution-regeneration strategies enabled full-cycle biodegradability. Cellulose/lignin composites, with renewability and multifunctionality, are ideal alternatives to conventional plastics. Future work requires overcoming lab-scale limitations through cost-effective scalable processes and life cycle assessments. Prioritizing smart responsive materials and interdisciplinary technologies will accelerate green packaging industrialization.

Key words

cellulose / lignin / lignocellulosic biomass / biodegradable packaging materials / UV-resistant packaging materials / antibacterial and antioxidant packaging materials / gas barrier packaging materials

Cite this article

Download Citations
TANG Shuhai, XU Xi, YANG Mingcong, ZHU Qi, CHEN Guangxue. Review of Cellulose and Lignin in Advanced Functional Packaging Materials[J]. Packaging Engineering. 2025, 46(15): 72-85 https://doi.org/10.19554/j.cnki.1001-3563.2025.15.008

References

[1] LU X Y, QUE H, GU X L.Facile Fabrication of Lignin Containing Cellulose Films Using Water as Green Solvent[J]. European Polymer Journal, 2022, 168: 111097.
[2] STATISTA RESEARCH DEPARTMENT.Manmade cellulosic Fibers Worldwide Production 2017-2023[R]. Published by Statista Research Department, 2025.
[3] ANON. Cellulose Film Market Size, Share & Trends Analysis Report By Product (Cellophane, Coated Cellulose Films, Uncoated Cellulose Films), By Application (Personal Care, Agriculture), By Region, And Segment Forecasts, 2025-2030[R]. Published by Grand View Research, 2025.
[4] SUGIARTO S, PONG R R, TAN Y C, et al.Advances in Sustainable Polymeric Materials from Lignocellulosic Biomass[J]. Materials Today Chemistry, 2022, 26: 101022.
[5] XU T, DU H S, LIU H Y, et al.Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices[J]. Advanced Materials, 2021, 33(48): 2170381.
[6] ZHU Z R, WANG W B, LIU Z M, et al.High-Strength, Lightweight and Sustainable Lignin Contained Cellulose Nanofiber Bulk Materials for Plastic Replacement[J]. Industrial Crops and Products, 2022, 185: 115106.
[7] HALDAR D, DEY P, THOMAS J, et al.One Pot Bioprocessing in Lignocellulosic Biorefinery: A Review[J]. Bioresource Technology, 2022, 365: 128180.
[8] LI Y J, LI F, YANG Y, et al.Research and Application Progress of Lignin-Based Composite Membrane[J]. Journal of Polymer Engineering, 2021, 41(4): 245-258.
[9] TEDESCHI G, GUZMAN-PUYOL S, CESERACCIU L, et al.Multifunctional Bioplastics Inspired by Wood Composition: Effect of Hydrolyzed Lignin Addition to Xylan-Cellulose Matrices[J]. Biomacromolecules, 2020, 21(2): 910-920.
[10] LI Y J, CHEN Y F, WU Q, et al.Improved Hydrophobic, UV Barrier and Antibacterial Properties of Multifunctional PVA Nanocomposite Films Reinforced with Modified Lignin Contained Cellulose Nanofibers[J]. Polymers, 2022, 14(9): 1705.
[11] TAN Z R, HU L, YANG D J, et al.Lignin: Excellent Hydrogel Swelling Promoter Used in Cellulose Aerogel for Efficient Oil/Water Separation[J]. Journal of Colloid and Interface Science, 2023, 629: 422-433.
[12] HALLOUB A, RAJI M, ESSABIR H, et al.Intelligent Food Packaging Film Containing Lignin and Cellulose Nanocrystals for Shelf Life Extension of Food[J]. Carbohydrate Polymers, 2022, 296: 119972.
[13] SHAO H J, ZHANG Y J, PAN H, et al.Preparation of Flexible and UV-Blocking Films from Lignin-Containing Cellulose Incorporated with Tea Polyphenol/Citric Acid[J]. International Journal of Biological Macromolecules, 2022, 207: 917-926.
[14] YANG F, XU L, DAI G D, et al.Conversion of Cellulose and Lignin Residues into Transparent UV-Blocking Composite Films[J]. Molecules, 2022, 27(5): 1637.
[15] MCFARLANE H E, DÖRING A, PERSSON S. The Cell Biology of Cellulose Synthesis[J]. Annual Review of Plant Biology, 2014, 65: 69-94.
[16] CARPITA N C.Update on Mechanisms of Plant Cell Wall Biosynthesis: How Plants Make Cellulose and Other (1→4)-β-d-Glycans[J]. Plant Physiology, 2011, 155(1): 171-184.
[17] ZHU J Y, AGARWAL U P.Nanocellulose: Native State, Production, and Characterization[M]//Emerging Nanotechnologies in Nanocellulose. Cham: Springer International Publishing, 2022: 1-39.
[18] CHEN C J, GAN W T, XIA Q Q.Top-down Processing of Nanocellulose Materials[M]//Emerging Nanotechnologies in Nanocellulose. Cham: Springer International Publishing, 2022: 41-74.
[19] LI C M, WU J Q, SHI H Y, et al.Fiber-Based Biopolymer Processing as a Route Toward Sustainability[J]. Advanced Materials, 2022, 34(1): 2105196.
[20] SHARMA V, CRNE M, PARK J O, et al.Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles[J]. Science, 2009, 325(5939): 449-451.
[21] ZHANG Z H, CHEN Z Y, WANG Y, et al.Bioinspired Conductive Cellulose Liquid-Crystal Hydrogels as Multifunctional Electrical Skins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(31): 18310-18316.
[22] ARCARI M, AXELROD R, ADAMCIK J, et al.Structure-Property Relationships of Cellulose Nanofibril Hydro and Aerogels and Their Building Blocks[J]. Nanoscale, 2020, 12(21): 11638-11646.
[23] ZHAO D W, PANG B, ZHU Y, et al.A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration[J]. Advanced Materials, 2022, 34(10): 2107857.
[24] QIAN H Q, LIU J J, WANG X C, et al.The State-of-the-Art Application of Functional Bacterial Cellulose-Based Materials in Biomedical Fields[J]. Carbohydrate Polymers, 2023, 300: 120252.
[25] WU Z T, CHEN S Y, LI J, et al.Insights into Hierarchical Structure-Property-Application Relationships of Advanced Bacterial Cellulose Materials[J]. Advanced Functional Materials, 2023, 33(12): 2214327.
[26] HU W L, CHEN S Y, YANG J X, et al.Functionalized Bacterial Cellulose Derivatives and Nanocomposites[J]. Carbohydrate Polymers, 2014, 101: 1043-1060.
[27] ABU-OMAR M M, BARTA K, BECKHAM G T, et al. Guidelines for Performing Lignin-First Biorefining[J]. Energy & Environmental Science, 2021, 14(1): 262-292.
[28] LIU Z H, LIU H, XU T, et al.Lignin Valorization Reshapes Sustainable Biomass Refining[J]. Renewable and Sustainable Energy Reviews, 2025, 211: 115296.
[29] RALPH J, LAPIERRE C, BOERJAN W.Lignin Structure and Its Engineering[J]. Current Opinion in Biotechnology, 2019, 56: 240-249.
[30] DEL RÍO J C, RENCORET J, GUTIÉRREZ A, et al. Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(13): 4997-5012.
[31] WANG S Z, SHEN Q R, SU S H, et al.The Temptation from Homogeneous Linear Catechyl Lignin[J]. Trends in Chemistry, 2022, 4(10): 948-961.
[32] CORONA A, BIDDY M J, VARDON D R, et al.Life Cycle Assessment of Adipic Acid Production from Lignin[J]. Green Chemistry, 2018, 20(16): 3857-3866.
[33] LIAO Y H, KOELEWIJN S F, VAN DEN BOSSCHE G, et al. A Sustainable Wood Biorefinery for Low-Carbon Footprint Chemicals Production[J]. Science, 2020, 367(6484): 1385-1390.
[34] ZHU X Y, LI H H, CAI L, et al.ZnO Nanoparticles Encapsulated Cellulose-Lignin Film for Antibacterial and Biodegradable Food Packaging[J]. iScience, 2024, 27(7): 110008.
[35] BAI F T, DONG T T, CHEN W, et al.Nanocellulose Hybrid Lignin Complex Reinforces Cellulose to Form a Strong, Water-Stable Lignin-Cellulose Composite Usable as a Plastic Replacement[J]. Nanomaterials, 2021, 11(12): 3426.
[36] JANG S, KIM B M, CHOI J S, et al.Synergistic Enhancement of Crosslinked Cellulose Nanofiber-Lignin Composite Films Toward Sustainable Biobased Materials[J]. Surfaces and Interfaces, 2025, 64: 106369.
[37] YU S X, GAN M X, CHEN Y R, et al.Fabrication of Lignin-Containing Cellulose Bio-Composite Based on Unbleached Corncob and Wheat Straw Pulp[J]. International Journal of Biological Macromolecules, 2022, 208: 741-747.
[38] PENG Y, NAIR S S, CHEN H Y, et al.Effects of Lignin Content on Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Micro Particles of Spray Dried Cellulose Nanofibrils[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 11078-11086.
[39] ZHU L, DANG B, ZHANG K R, et al.Transparent Bioplastics from Super-Low Lignin Wood with Abundant Hydrophobic Cellulose Crystals[J]. ACS Sustainable Chemistry & Engineering, 2022, 10:13775-13785.
[40] CHINTHAPALLI R, SKOCZINSKI P, CARUS M, et al.Biobased Building Blocks and Polymers-Global Capacities, Production and Trends, 2018-2023[J]. Industrial Biotechnology, 2019, 15(4): 237-241.
[41] ZABOROWSKA M, BERNAT K.The Development of Recycling Methods for Bio-Based Materials-a Challenge in the Implementation of a Circular Economy: A Review[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2023, 41(1): 68-80.
[42] EL KHETABI A, LAHLALI R, EZRARI S, et al.Role of Plant Extracts and Essential Oils in Fighting Against Postharvest Fruit Pathogens and Extending Fruit Shelf Life: A Review[J]. Trends in Food Science & Technology, 2022, 120: 402-417.
[43] DONG T T, CHEN W, CAI C C, et al.Water-Stable, Strong, Biodegradable Lignocellulose Straws Replacement for Plastic Straws[J]. Chemical Engineering Journal, 2023, 451: 138970.
[44] DAI Q H, BAI Y H, FU B, et al.Multifunctional Bacterial Cellulose Films Enabled by Deep Eutectic Solvent-Extracted Lignin[J]. ACS Omega, 2023, 8(8): 7430-7437.
[45] NÁDIA M S M S, MATTOS A L A, SILVA L M A, et al. From Cashew Byproducts to Biodegradable Active Materials: Bacterial Cellulose-Lignin-Cellulose Nanocrystal Nanocomposite Films[J]. International Journal of Biological Macromolecules, 2020, 161: 1337-1345.
[46] SEHAQUI H, SPERA P, HUCH A, et al.Nanoparticles Capture on Cellulose Nanofiber Depth Filters[J]. Carbohydrate Polymers, 2018, 201: 482-489.
[47] 廖雨瑶, 陈丹青, 李伟, 等. 智能包装研究及应用进展[J]. 绿色包装, 2016(2): 39-46.
LIAO Y Y, CHEN D Q, LI W, et al.Intelligent Packaging Research and Application Progress[J]. Green Packaging, 2016(2): 39-46.
[48] LING Z, CHEN J, WANG X Y, et al.Nature-Inspired Construction of Iridescent CNC/Nano-Lignin Films for UV Resistance and Ultra-Fast Humidity Response[J]. Carbohydrate Polymers, 2022, 296: 119920.
[49] LIU P J, CHEN W H, LIU Y, et al.Thermal Melt Processing to Prepare Halogen-Free Flame Retardant Poly(vinyl alcohol)[J]. Polymer Degradation and Stability, 2014, 109: 261-269.
[50] VAN NGUYEN S, LEE B K.Multifunctional Nanocomposite Based on Polyvinyl Alcohol, Cellulose Nanocrystals, Titanium Dioxide, and Apple Peel Extract for Food Packaging[J]. International Journal of Biological Macromolecules, 2023, 227: 551-563.
[51] BERCEA M.Recent Advances in Poly(vinyl alcohol)-Based Hydrogels[J]. Polymers, 2024, 16(14): 2021.
[52] YANG W J, QI G C, KENNY J M, et al.Effect of Cellulose Nanocrystals and Lignin Nanoparticles on Mechanical, Antioxidant and Water Vapour Barrier Properties of Glutaraldehyde Crosslinked PVA Films[J]. Polymers, 2020, 12(6): 1364.
[53] PARIT M, DU H, ZHANG X, et al.Flexible, Transparent, UV-Protecting, Water-Resistant Nanocomposite Films Based on Polyvinyl Alcohol and Kraft Lignin-Grafted Cellulose Nanofibers[J]. ACS Applied Polymer Materials, 2022, 4:3587-3597.
[54] KIMIAEI E, FAROOQ M, GRANDE R, et al.Lignin Nanoparticles as an Interfacial Modulator in Tough and Multi-Resistant Cellulose-Polycaprolactone Nanocomposites Based on a Pickering Emulsions Strategy[J]. Advanced Materials Interfaces, 2022, 9(27): 2200988.
[55] LAM S J, WONG E H H, BOYER C, et al. Antimicrobial Polymeric Nanoparticles[J]. Progress in Polymer Science, 2018, 76: 40-64.
[56] PAN Y F, XIAO H N, CAI P X, et al.Cellulose Fibers Modified with Nano-Sized Antimicrobial Polymer Latex for Pathogen Deactivation[J]. Carbohydrate Polymers, 2016, 135: 94-100.
[57] PRIYADARSHI R, GHOSH T, PUROHIT S D, et al.Lignin as a Sustainable and Functional Material for Active Food Packaging Applications: A Review[J]. Journal of Cleaner Production, 2024, 469: 143151.
[58] ALI M A, ABDEL-MOEIN N M, OWIS A S, et al. Eco-Friendly Lignin Nanoparticles as Antioxidant and Antimicrobial Material for Enhanced Textile Production[J]. Scientific Reports, 2024, 14(1): 17470.
[59] WANG W, QIN C R, LI W, et al.Design of Antibacterial Cellulose Nanofibril Film by the Incorporation of Guanidine-Attached Lignin Nanoparticles[J]. Cellulose, 2022, 29(6): 3439-3451.
[60] ABDULRASHEED-ADELEKE T, EGWIM E C, SADIKU E R, et al.Optimization of Lignin-Cellulose Nanofiber-Filled Thermoplastic Starch Composite Film Production for Potential Application in Food Packaging[J]. Molecules, 2022, 27(22): 7708.
[61] WANG X, WANG S Y, LIU W, et al.Facile Fabrication of Cellulose Composite Films with Excellent UV Resistance and Antibacterial Activity[J]. Carbohydrate Polymers, 2019, 225: 115213.
[62] HUANG C X, DONG H L, ZHANG Z P, et al.Procuring the Nano-Scale Lignin in Prehydrolyzate as Ingredient to Prepare Cellulose Nanofibril Composite Film with Multiple Functions[J]. Cellulose, 2020, 27(16): 9355-9370.
[63] LIU W, DU H S, ZHANG M M, et al.Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(20): 7536-7562.
[64] LIU K, DU H S, ZHENG T, et al.Recent Advances in Cellulose and Its Derivatives for Oilfield Applications[J]. Carbohydrate Polymers, 2021, 259: 117740.
[65] LIU W, DU H S, LIU K, et al.Sustainable Preparation of Cellulose Nanofibrils via Choline Chloride-Citric Acid Deep Eutectic Solvent Pretreatment Combined with High-Pressure Homogenization[J]. Carbohydrate Polymers, 2021, 267: 118220.
[66] AN L L, CHEN J S, HEO J W, et al.Synthesis of Lignin-Modified Cellulose Nanocrystals with Antioxidant Activity via Diels-Alder Reaction and Its Application in Carboxymethyl Cellulose Film[J]. Carbohydrate Polymers, 2021, 274: 118651.
[67] MICHELIN M, MARQUES A M, PASTRANA L M, et al.Carboxymethyl Cellulose-Based Films: Effect of Organosolv Lignin Incorporation on Physicochemical and Antioxidant Properties[J]. Journal of Food Engineering, 2020, 285: 110107.
[68] GUO L K, LI M, XU Q H, et al.Bio-Based Films with High Antioxidant and Improved Water-Resistant Properties from Cellulose Nanofibres and Lignin Nanoparticles[J]. International Journal of Biological Macromolecules, 2023, 227: 365-372.
[69] RUKMANIKRISHNAN B, RAMALINGAM S, RAJASEKHARAN S K, et al.Binary and Ternary Sustainable Composites of Gellan Gum, Hydroxyethyl Cellulose and Lignin for Food Packaging Applications: Biocompatibility, Antioxidant Activity, UV and Water Barrier Properties[J]. International Journal of Biological Macromolecules, 2020, 153: 55-62.
[70] FAROOQ M, ZOU T, RIVIERE G, et al.Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles[J]. Biomacromolecules, 2019, 20(2): 693-704.
[71] HAN Z W, WANG H M, CHEN X, et al.Lignin Reinforced Eco-Friendly and Functional Nanoarchitectonics Materials with Tailored Interfacial Barrier Performance[J]. Journal of Colloid and Interface Science, 2025, 684: 735-757.
[72] PASQUIER E, MATTOS B D, KOIVULA H, et al.Multilayers of Renewable Nanostructured Materials with High Oxygen and Water Vapor Barriers for Food Packaging[J]. ACS Applied Materials & Interfaces, 2022, 14(26): 30236-30245.
[73] LI Q, SUN Z H, SUN K H, et al.Study on the Barrier Properties of Carboxymethyl Cellulose/Montmorillonite Mulch Films Regulated by Magnetic Field[J]. International Journal of Biological Macromolecules, 2025, 308: 142428.
[74] TYAGI P, LUCIA L A, HUBBE M A, et al.Nanocellulose-Based Multilayer Barrier Coatings for Gas, Oil, and Grease Resistance[J]. Carbohydrate Polymers, 2019, 206: 281-288.
[75] TAYEB A H, TAJVIDI M, BOUSFIELD D.Paper-Based Oil Barrier Packaging Using Lignin-Containing Cellulose Nanofibrils[J]. Molecules, 2020, 25(6): 1344.
[76] XIE J X, XU J, ZHANG Z H, et al.New Ternary Deep Eutectic Solvents with Cycle Performance for Efficient Pretreated Radiata Pine Forming to Lignin Containing Cellulose Nanofibrils[J]. Chemical Engineering Journal, 2023, 451: 138591.
[77] PYLYPCHUK I, SELYANCHYN R, BUDNYAK T, et al.'Artificial Wood' Lignocellulosic Membranes: Influence of Kraft Lignin on the Properties and Gas Transport in Tunicate-Based Nanocellulose Composites[J]. Membranes, 2021, 11(3): 204.
[78] LUO J Q, SU Y Q, CHEN J H, et al.Pretreatment of Lignin-Containing Cellulose Micro/Nano-Fibrils (LCMNF) from Corncob Residues[J]. Cellulose, 2021, 28(8): 4671-4684.
[79] ZHAO Y D, TROEDSSON C, BOUQUET J M, et al.Mechanically Reinforced, Flexible, Hydrophobic and UV Impermeable Starch-Cellulose Nanofibers (CNF)-Lignin Composites with Good Barrier and Thermal Properties[J]. Polymers, 2021, 13(24): 4346.
PDF(12209 KB)

Accesses

Citation

Detail

Sections
Recommended

/