Design and Performance Testing of Railway Containers for Lithium-ion Batteries

ZHANG Hui, YAO Zhenkun, SHI Lei, MA Yukun

Packaging Engineering ›› 2025, Vol. 46 ›› Issue (13) : 24-30.

PDF(1013 KB)
PDF(1013 KB)
Packaging Engineering ›› 2025, Vol. 46 ›› Issue (13) : 24-30. DOI: 10.19554/j.cnki.1001-3563.2025.13.003
Special Topic on Protection Technologies and Packaging Containers for Lithium Battery Transportation

Design and Performance Testing of Railway Containers for Lithium-ion Batteries

  • ZHANG Hui1,*, YAO Zhenkun2, SHI Lei2, MA Yukun1
Author information +
History +

Abstract

To address the thermal runaway characteristics of lithium-ion batteries (LIBs) and risks inherent in railway container transportation, the work aims to design and develop a 40-foot LIB railway container and verify the performance of the container to ensure compliance with LIB railway transportation safety requirements. Potential failure modes during LIB railway transportation were analyzed. Aiming at the thermal runaway behavior within containers, a 40-foot container integrating critical safety functions of flame retardancy/thermal insulation, pressure relief/exhaust ventilation, and real-time in-transit cargo condition monitoring was developed. Then, flame retardancy and fire resistance testing, pressure relief and exhaust performance testing, railway impact testing of containers loaded with LIBs, and structural integrity testing under LIB thermal runaway conditions were carried out. The newly developed 40-foot LIB railway container integrated critical safety functions, including flame retardancy and thermal insulation, pressure relief and exhaust ventilation, and real-time in-transit cargo condition monitoring, obtained the relevant container-type certification from the China Classification Society (CCS) and passed the following critical tests of flame retardancy and fire resistance, pressure relief and exhaust performance, rail impact of containers loaded with LIBs, and structural integrity under LIB thermal runaway conditions. These tests validated that the primary functions and performance of the container met railway transportation safety requirements, with successful field applications demonstrating practical efficacy. The 40-foot LIB railway container developed in this study meets all railway transportation safety requirements and facilitates multimodal transportation of LIBs. Its performance validation scheme provides critical technical substantiation for establishing performance criteria and standardized testing procedures for LIB railway containers.

Key words

lithium-ion batteries / railway transportation / railway container / design scheme / performance testing

Cite this article

Download Citations
ZHANG Hui, YAO Zhenkun, SHI Lei, MA Yukun. Design and Performance Testing of Railway Containers for Lithium-ion Batteries[J]. Packaging Engineering. 2025, 46(13): 24-30 https://doi.org/10.19554/j.cnki.1001-3563.2025.13.003

References

[1] 交通运输部等.关于加快提升新能源汽车动力锂电池运输服务和安全保障能力的若干措施[EB/OL]. (2024-09-14) [2025-05-19]. https://www.gov.cn/zhengce/zhengceku/202409/content_6975509.htm
Ministry of Transport, et al. Several Measures on Accelerating the Enhancement of Transportation Services and Safety Assurance Capabilities for New Energy Vehicle Power Lithium Batteries [EB/OL]. (2024-09-14) [2025-05-19]. https://www.gov.cn/zhengce/zhengceku/202409/content_6975509.htm
[2] 周志钻, 王博轩, 宋露露, 等. 锂离子电池热失控行为及火灾危险性研究综述[J]. 消防科学与技术, 2024, 43(5): 605-612.
ZHOU Z Z, WANG B X, SONG L L, et al.Review on Thermal Runaway Behaviors and Fire Hazards of Lithium-Ion Batteries[J]. Fire Science and Technology, 2024, 43(5): 605-612.
[3] 钱峰, 李明海, 王贺武, 等. 动力锂电池热失控热特性与产气研究[J]. 大连交通大学学报, 2025, 46(2): 88-93.
QIAN F, LI M H, WANG H W, et al.Thermal Runaway Characteristics and Gas Production of Power Lithium Batteries[J]. Journal of Dalian Jiaotong University, 2025, 46(2): 88-93.
[4] 曹勇, 杨大鹏, 朱清, 等. 大容量磷酸铁锂电池模组热失控研究[J]. 储能科学与技术, 2024, 13(7): 2462-2469.
CAO Y, YANG D P, ZHU Q, et al.Thermal Runaway of Large Capacity Lithium-Iron Phosphate Battery Pack[J]. Energy Storage Science and Technology, 2024, 13(7): 2462-2469.
[5] 王春雷, 刘志博, 王文鹤, 等. 磷酸铁锂电池热失控研究及参量优化[J]. 电源技术, 2025, 49(3): 2031-2039.
WANG C L, LIU Z B, WANG W H, et al.Research on Thermal Runaway and Parameter Optimization of Lithium Iron Phosphate Batteries[J]. Chinese Journal of Power Sources, 2025, 49(3): 2031-2039.
[6] 张磊, 刘彦辉, 叶从亮, 等. 针刺诱发电池热失控的研究进展综述[J]. 消防科学与技术, 2024, 43(5): 597-604.
ZHANG L, LIU Y H, YE C L, et al.Review of Research Progress on the Battery Thermal Runaway Induced by Nail Penetration[J]. Fire Science and Technology, 2024, 43(5): 597-604.
[7] 格桑多吉, 谢永亮. 不同正极材料锂电池火灾危害性分析[J]. 制冷与空调(四川), 2023, 37(1): 52-59.
GESANGDUOJI, XIE Y L. Analysis of Fire Hazards of Lithium Batteries with Different Cathode Materials[J]. Refrigeration & Air Conditioning, 2023, 37(1): 52-59.
[8] 杨娟, 牛江昊, 魏陟珣, 等. 航空动力锂离子电池热失控行为与气体燃爆危险性研究进展[J]. 爆炸与冲击, 2025, 45(2): 87-104.
YANG J, NIU J H, WEI Z X, et al.Research Progress of Thermal Runaway and Gas Explosion Hazard of Lithium-Ion Batteries for Aviation Propulsion[J]. Explosion and Shock Waves, 2025, 45(2): 87-104.
[9] 卫寿平, 孙杰, 李吉刚, 等. 锂离子电池热失控气体产物检测及分析技术研究进展[J]. 储能科学与技术, 2024, 13(11): 4155-4176.
WEI S P, SUN J, LI J G, et al.Research Progress on Detection and Analysis of Thermal Runaway Gas Products from Lithium-Ion Batteries[J]. Energy Storage Science and Technology, 2024, 13(11): 4155-4176.
[10] 朱艳丽, 徐艺博, 王聪杰, 等. 不同荷电状态磷酸铁锂电池热失控温度与产气特性分析[J]. 安全与环境学报, 2024, 24(1): 143-151.
ZHU Y L, XU Y B, WANG C J, et al.Analysis of Thermal Runaway Temperature and Gas Production Characteristics of Lithium Iron Phosphate Batteries with Different States of Charge[J]. Journal of Safety and Environment, 2024, 24(1): 143-151.
[11] 张子敬, 原蓓蓓, 李红, 等.锂离子电池热失控气体检测分析及预警研究[J/OL]. 储能科学与技术, 2025: 1-14(2025-05-19). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2025.0016.
ZHANG Z J, YUAN B B, LI H, et al.Research on Thermal Runaway Gas Detection and Early Warning of Lithium-Ion Batteries[J/OL]. Energy Storage Science and Technology, 2025: 1-14.(2025-05-19). https://link.cnki.net/doi/10.19799/j.cnki.2095-4239.2025.0016.
[12] 刘鹏杰. 储能用大型磷酸铁锂电池热失控产热产气及燃爆特性研究[D]. 合肥: 中国科学技术大学, 2024.
LIU P J.Study on Thermal Runaway Heat and Gas Generation and Explosion Characteristics of Large-Scale Lithium Iron Phosphate Battery for Energy Storage[D]. Hefei: University of Science and Technology of China, 2024.
[13] CHEN S C, WANG Z R, WANG J H, et al.Lower Explosion Limit of the Vented Gases from Li-Ion Batteries Thermal Runaway in High Temperature Condition[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 103992.
[14] HENRIKSEN M, VAAGSAETHER K, LUNDBERG J, et al.Explosion Characteristics for Li-Ion Battery Electrolytes at Elevated Temperatures[J]. Journal of Hazardous Materials, 2019, 371: 1-7.
[15] 张磊, 黄昊, 张永丰. 磷酸铁锂电池的热失控产气特性研究[J]. 武汉理工大学学报(信息与管理工程版), 2025, 47(2): 169-173.
ZHANG L, HUANG H, ZHANG Y F.Study on the Thermal Runaway and Gas Production Characteristics of LFP Energy Storage Batteries[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2025, 47(2): 169-173.
[16] 杨梓. 我国动力锂电池铁路运输实现“零突破”[N]. 中国能源报, 2024-11-25(3).
YANG Z. Chinese Power Lithium Battery Railway Achieves the Zero Breakthrough in Transportation[N]. China Energy News, 2024-11-25(3).
PDF(1013 KB)

Accesses

Citation

Detail

Sections
Recommended

/