Abstract
The work aims to design a recyclable zipper mail bag with quality and strength meeting the need of use to replace the disposable mail bag and realize the concept of green development. The structure of the recyclable zipper mail bag was designed. Based on finite element analysis, the real physical system of zipper mail bag in practical application was simulated. The stress, strain and deformation of the zipper mail bag under three influencing factors such as material, fixing method of clamp and load were analyzed. Then, the simulation results were compared to determine and verify the material of recyclable zipper mail bag. In view of different materials, polyester resin (PET) had a smaller deformation, followed by high-density polyethylene (HDPE), while polypropylene (PP) had a larger deformation. In different fixing methods, when two short sides of the bag mouth were fixed by clamps, the stress of the bag mouth was more concentrated, the displacement was the maximum and the strain was larger. However, when the four sides of bag mouth were fixed by clamps, deformation and stress were both less. Under different loads, the load and the changes of stress, displacement and strain were positively correlated, and the positions where the maximum stress, displacement, and strain appeared were relatively stable. With the help of finite element analysis, the stress in practical application of zipper mail bag is simulated, and the mechanical properties of recyclable zipper mail bag under different materials, fixing methods of clamp and loads are analyzed, which saves manpower and material resources and provides a basis for practical application. At the same time, the feasibility of polyester resin (PET) as recyclable zipper mail bag is proved, which lays a foundation for the production of green, environmentally friendly, degradable and recyclable zipper mail bag, and has important significance for plastic limiting and green development.
Cite this article
Download Citations
DONG Di.
Simulation of Recyclable Zipper Mail Bag Based on Finite Element Analysis[J]. Packaging Engineering. 2022(15): 234-240 https://doi.org/10.19554/j.cnki.1001-3563.2022.15.027
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}