基于高斯拉普拉斯算子的色域映射算法

顾轶凡, 刘真, 朱明

包装工程(技术栏目) ›› 2014 ›› Issue (9) : 95-98.

包装工程(技术栏目) ›› 2014 ›› Issue (9) : 95-98.

基于高斯拉普拉斯算子的色域映射算法

  • 顾轶凡1, 刘真2, 朱明3
作者信息 +

Gamut Mapping Algorithm Based on Laplace of Gaussian Function

  • GU Yi-fan1, LIU Zhen2, ZHU Ming3
Author information +
文章历史 +

摘要

目的 进一步提高色域映射质量,深入研究空间色域映射算法。 方法 利用高斯拉普拉斯算子对原图的边缘细节进行提取,叠加到映射后图像上再进行二次映射,得到的图像使用结构相关性和图像色差模型进行评价,将数据与最小色差法、CUSP 和 Bala 等人提出的算法进行比较。 结果 基于高斯拉普拉斯算子的色域映射算法的结构相关性和图像色差都比 Bala 等人提出的算法要好。 对于色彩艳丽、细节丰富的图像,空间色域映射算法结构相关性和图像色差反而不如普通算法。 结论 基于高斯拉普拉斯算子的色域映射算法能够提高图像的映射质量,但是空间色域映射算法映射质量并不一定优于非空间类色域映射算法。

Abstract

Objective To further improve the quality of gamut mapped image, in-depth research was performed under the frame of spatial gamut mapping algorithms in this paper. Methods Laplace of Gaussian function was used to obtain the details of original image to be added in the first mapped image. Then the image was mapped for the second time to make sure the color value was within the target gamut. The data was compared with the minimum color difference method, CUSP and the algorithm proposed by Bala et al. Results Gamut mapping algorithm based on laplace of gaussian function was better than the algorithm proposed by Bala et al in the data of structure similarity and image difference. However, the situation was opposite for images with vivid color and rich details. Conclusion Gamut mapping algorithm based on laplace of gaussian function could improve the quality of gamut mapped image, but the spatial gamut mapping algorithms were not always better than the common algorithms.

引用本文

导出引用
顾轶凡, 刘真, 朱明. 基于高斯拉普拉斯算子的色域映射算法[J]. 包装工程(技术栏目). 2014(9): 95-98
GU Yi-fan, LIU Zhen, ZHU Ming. Gamut Mapping Algorithm Based on Laplace of Gaussian Function[J]. Packaging Engineering. 2014(9): 95-98

基金

国家自然科学基金项目(61301231)

Accesses

Citation

Detail

段落导航
相关文章

/