目的 为了降低包装托盘在运输过程中的特定频段高振动幅值响应。方法 依据该类包装托盘的实际装配约束下的固支特征,随后对该类托盘结构加以模态分析,获得其模态特性而后进行模态叠加而得到该类托盘系统的振动传递结果;而后在明确不同T型振子结构耦合状况下的包装托盘结构动力学特性,同样分别对其进行振动传递结果分析,最后将统计所有类型下的结果,总结具有振子吸振作用的包装托盘动力学变化规律。结果 通过对比在增加T型振子前后的2种结构动力学特性可知,在增加T型振子的前提下包装托盘有效实现了对前2阶共振峰进行高效抑制,明确不同振子结构耦合作用,有效抑制了共振频率处的振动抑制。结论 通过上述结构仿真分析,可得到包装托盘在增加T型振子耦合作用机制下的动力学特性及振动传递变化规律,为同类包装托盘设计提供新思路。
Abstract
The work aims to reduce the high vibration amplitude response of packaging trays in specific frequency bands during transportation. Based on the fixed support characteristics under the actual assembly constraints of this type of packaging tray, the modal analysis was conducted to tray structures to obtain its modal characteristics, and then the modal superposition was performed to obtain the vibration transmission results of the tray system. Next, the dynamic characteristics of packaging tray structures under different coupling conditions of T-shaped oscillator structures were clarified, and the vibration transmission results were analyzed separately. Finally, the dynamic changes of packaging trays with oscillator absorption effects were summarized for all types. By comparing the dynamic characteristics of the two structures before and after a T-shaped oscillator was added, it was concluded that the packaging tray effectively suppressed the first two resonance peaks under the premise of adding a T-shaped oscillator, which clarified the coupling effect of different oscillator structures, and effectively suppressed vibration suppression at the resonance frequency. Through the above structural simulation analysis, the dynamic characteristics and vibration transmission changes of packaging trays under the coupling mechanism of T-shaped oscillators can be obtained, providing new ideas for the design of similar packaging trays.
关键词
包装托盘 /
结构动力学 /
T型振子 /
振动传递
Key words
packaging tray /
structural dynamics /
T-shaped oscillator /
vibration transmission
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙杰华, 蒋明明, 赵西友. 中件空投托盘缓冲包装设计[J]. 包装工程, 2022, 43(7): 154-159.
SUN J H, JIANG M M, ZHAO X Y.Design of Middle Airdrop Pallets Buffer Packaging[J]. Packaging Engineering, 2022, 43(7): 154-159.
[2] SADEGHI F, ANSARI R, BASTI A.Large Deformation Analysis of Arbitrary-Shaped Micromorphic Hyperelastic Structures: A Finite Element Approach[J]. International Journal for Numerical Methods in Engineering, 2025, 126(15): e70059.
[3] 王海文, 张江学, 段伟飞. Pro/E的包装运输托盘参数化设计[C]// 陕西省机械工程学会2014年论文汇编. 2022: 77-80.
WANG H W, ZHANG J X, DUAN W F.Parametric Design of Packaging and Transportation Pallet for Pro/E[C]// Collected Papers of Mechanical Engineering Society of Shaanxi Province 2014. 2022: 77-80.
[4] 仲轩阳, 陈成勇, 孔思宇, 等. 组合多箱梁桥横向分布系数计算研究[J]. 世界桥梁, 2025, 53(5): 84-90.
ZHONG X Y, CHEN C Y, KONG S Y, et al.Calculation and Analysis of Load Distribution Factor of Composite Multi-Box Girder Bridge[J]. World Bridges, 2025, 53(5): 84-90.
[5] YAZIDI Y E.An Efficient Numerical Scheme Based on Radial Basis Functions and a Hybrid Quasi-Newton Method for a Nonlinear Shape Optimization Problem[J]. Math. Comput. Appl. 2022, 27(4): 67-79.
[6] KNUTH C, SQUICCIARINI G, THOMPSON D.An Efficient Model for Predicting the Sound Radiation from a Railway Rail Accounting for Cross-Section Deformation[J]. Journal of Sound and Vibration, 2025, 618: 119323.
[7] 魏群峰, 孙牧原. 包装技术在降低综合物流成本中的作用和创新发展方向[J]. 天津科技, 2025, 52(7): 99-102.
WEI Q F, SUN M Y.Role and Innovative Development Direction of Packaging Technology in Reducing Comprehensive Logistics Costs[J]. Tianjin Science & Technology, 2025, 52(7): 99-102.
[8] ZANARINI A.Achievements of dense ESPI complex-Valued Full-Field receptances in Experiment-Based Rayleigh Integral Approximations of Sound Radiation from a Vibrating Plate[J]. Journal of Fluids and Structures, 2025, 137: 104340.
[9] ZHAO J H, FU Y Q, ZHANG Y L, et al.Localized Filtrating Modification for Fabricating Gradient Composites Delivering Lightweight and Enhanced Thermal Protection[J]. Journal of Materials Science & Technology, 2026, 245: 152-163.
[10] TOYAMA N, NAGASHIMA T, WADA K, et al.Synthesis of Mesoporous SiO2-Al2O3 Hollow Spheres Using Ultrasonic Irradiation and Their Activity for Hydrolysis of Ammonia Borane[J]. Next Materials, 2025, 8: 100777.
[11] PUNGPA KOCHAKORN.泰国J公司向中国出口生鲜产品的物流问题及策略研究[D]. 北京: 北京交通大学, 2023.
PUNGPA K.Study on Logistics Problems and Strategies of Thai J Company Exporting Fresh Products to China[D]. Beijing: Beijing Jiaotong University, 2023.
[12] 索瑾萱. 可持续设计理念在物流包装中的应用探讨[J]. 中国储运, 2025(6): 50-51.
SUO J X.Discussion on the Application of Sustainable Design Concepts in Logistics Packaging[J]. China Storage & Transport, 2025(6): 50-51.
[13] 郭丽萍. 基于共用系统包装物可拆分托盘的优化设计——以“宜家”品牌产品为例[D]. 株洲: 湖南工业大学, 2019.
GUO L P.Optimal Design of Split Tray for Packaging Based on Shared System[D]. Zhuzhou: Hunan University of Technology, 2019.
[14] 陈明. 卷烟成品整托盘垛包装工艺的研究与应用[J]. 包装工程, 2018, 39(13): 98-104.
CHEN M.Research and Application of Packaging Technology in Entire-Pallet Stack of Cigarette Product[J]. Packaging Engineering, 2018, 39(13): 98-104.
[15] 彭国勋. 托盘与单元包装的智能设计[J]. 物流技术与应用, 2019, 24(1): 112-115.
PENG G X.Intelligent Design of Pallet and Unit Packaging[J]. Logistics & Material Handling, 2019, 24(1): 112-115.
[16] ZHAO R, SHE J, JIA Y.Research on the New Mode of Green Development of Express Packaging under the Goal of "Double-Carbon"[J]. Environment, Resource and Ecology Journal, 2023, 7(6): 105-112.
基金
2023年和2025年江苏省“青蓝工程”培养项目; 太仓市基础研究计划项目(TC2024JC31); 江苏省教育科学规划课题(C/2023/02/27)