基于一次冲击构建缓冲材料任一缓冲曲线

王思宇, 孙德强, 王灿, 柯贤朋, 吕嘉祥, 贺镇阳

包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (23) : 305-313.

PDF(1121 KB)
PDF(1121 KB)
包装工程(技术栏目) ›› 2025, Vol. 46 ›› Issue (23) : 305-313. DOI: 10.19554/j.cnki.1001-3563.2025.23.032
装备防护

基于一次冲击构建缓冲材料任一缓冲曲线

  • 王思宇1, 孙德强2,*, 王灿2, 柯贤朋2, 吕嘉祥2, 贺镇阳2
作者信息 +

Constructing Any Cushion Curve of Cushioning Material via a Single Impact

  • WANG Siyu1, SUN Deqiang2,*, WANG Can2, KE Xianpeng2, LYU Jiaxiang2, HE Zhenyang2
Author information +
文章历史 +

摘要

目的 克服缓冲材料产品脆值-静应力缓冲曲线测定实验标准存在的诸多弊端,探究基于一次冲击来构建缓冲材料任一缓冲曲线的方法。方法 在材料缓冲理论基础上,将冲击过程中缓冲衬垫的最大单位体积能量吸收和最大应力视为变量,分析两者与其影响因素之间的函数关系式。结果 一定缓冲材料的最大单位体积能量吸收和最大应力满足确定的函数关系,可与该缓冲材料一次动态冲击的应力-应变曲线建立联系,由此理论依据提出了基于缓冲材料的一次冲击构建其通常产品流通环境决定的任一跌落高度和衬垫厚度组合下缓冲曲线的具体实施步骤。结论 针对一泡沫材料,将利用该缓冲曲线构建方法预测的任一缓冲曲线与相应缓冲曲线上实验测量结果进行对比分析,两者良好的吻合性证明了该方法的可靠性。

Abstract

The work aims to explore a method for constructing any cushion curve of a cushioning material through a single impact, to overcome the numerous drawbacks in determining the product fragility-static stress cushion curves of cushioning materials in accordance with relevant testing standards. Based on the existing cushioning theory of materials, with the maximum energy absorption per unit volume and the maximum stress of the cushioning pad during the impact process as variables, the functional relationships between both variables and their influencing factors were analyzed. For a specific cushioning material, its maximum energy absorption per unit volume relied on its maximum stress by a definite functional relationship which could be linked to its stress-strain curve under a single dynamic impact. From such a theoretical basis, a method was proposed to construct any cushion curve of a cushioning material under any combination of drop height and cushion thickness determined by the product distribution environment via a single impact, and the detailed implementation steps were introduced. For a certain foam cushioning material, the cushion curve constructed in this method is compared with the corresponding tested results. The good consistency between them proves the reliability of the proposed construction method.

关键词

缓冲曲线 / 一次冲击 / 理论依据 / 实施步骤 / 可靠性验证

Key words

cushion curves / single impact / theoretical basis / implementation steps / verification of reliability

引用本文

导出引用
王思宇, 孙德强, 王灿, 柯贤朋, 吕嘉祥, 贺镇阳. 基于一次冲击构建缓冲材料任一缓冲曲线[J]. 包装工程. 2025, 46(23): 305-313 https://doi.org/10.19554/j.cnki.1001-3563.2025.23.032
WANG Siyu, SUN Deqiang, WANG Can, KE Xianpeng, LYU Jiaxiang, HE Zhenyang. Constructing Any Cushion Curve of Cushioning Material via a Single Impact[J]. Packaging Engineering. 2025, 46(23): 305-313 https://doi.org/10.19554/j.cnki.1001-3563.2025.23.032
中图分类号: TB485.1   

参考文献

[1] 彭国勋, 孙德强. 物流运输包装设计(第3版)[M]. 北京: 文化出版社, 2025: 1-7.
PENG G X, SUN D Q. Distribution Packaging Design (3rd Edition)[M]. Beijing: Culture Development Press, 2025: 1-7.
[2] 国家质量监督检验检疫总局中国国家标准化管理委员会. 缓冲包装设计: GB/T 8166—2011[S]. 北京: 中国标准出版社, 2012: 1-22.
Standardization Administration of the People's Republic of China. Package Cushioning Design: GB/T 8166- 2011[S]. Beijing: Standards Press of China, 2012: 1-22.
[3] 孙德强. 缓冲防护材料计算机辅助优化设计系统[J]. 陕西科技大学学报(自然科学版), 2006, 24(4): 60-66.
SUN D Q.Computer Aided Design System of Cushioning Materials[J]. Journal of Shaanxi University of Science and Technology (Natural Science Edition), 2006, 24(4): 60-66.
[4] 王思宇, 孙德强, 赵文, 等. 由材料的一条已知缓冲曲线构建其任一缓冲曲线[J]. 包装工程, 2025, 46(21): 1-8.
WANG S Y, SUN D Q, ZHAO W, et al.Construction of any Cushion Curve of a Material from a Single Known Instance[J]. Packaging Engineering, 2025, 46(21): 1-8.
5 KONG L, SUN D, ZHANG M, et al. Category, Construction Principles and Comparison of Cushioning Curves for Packaging Design[J]. Printing and Digital Media Technology Study, 2025, Accepted.
[5] SUN D Q, QIU P C, CHEN H J, et al.Principles and Practical Steps of Simplifying the Construction of the Cushion Curves of Closed-Cell Foam Materials[J]. Polymers, 2025, 17(17): 2292.
[6] JANSSEN R R.A Method for the Paper Selection of a Package Cushion Material and Its Dimensions[R]. North American Aviation: Rept NA-51-100, 1952.
[7] RUSCH K C.Impact Energy Absorption by Foamed Polymers[J]. Journal of Cellular Plastics, 1971, 7(2): 78-83.
[8] GE C, GOODWIN D, YOUNG D. Using the C‐e Pairs to Develop Conventional Cushion Curves and Cushioning Specifications[J]. Journal of Applied Packaging Research, 2007, 2(1): 15‐26.
[9] MAITI S K, GIBSON L J, ASHBY M F.Deformation and Energy Absorption Diagrams for Cellular Solids[J]. Acta Metallurgica, 1984, 32(11): 1963-1975.
[10] 孙德强. 基于能量吸收图法的缓冲包装材料优化设计[J]. 西安理工大学学报, 2006, 22(4): 411-414.
SUN D Q.Optimal Design of Materials for Cushioning Packaging Based on Energy Absorption Diagrams[J]. Journal of Xi'an University of Technology, 2006, 22(4): 411-414.
[11] 国家质量监督检验检疫总局中国国家标准化管理委员会. 包装用缓冲材料动态压缩试验方法: GB/T 8167—2008[S]. 北京: 中国标准出版社, 2009: 1-6.
Standardization Administration of the People's Republic of China. Testing Method of Dynamic Compression for Packaging Cushioning Materials: GB/T 8167-2008[S]. Beijing: Standards Press of China, 2009: 1-6.
[12] Standard Test Method for Dynamic Shock Cushioning Characteristics of Packaging Material: ASTM D1596-14[S]. ASTM International, 2014.
[13] GE C F.Theory and Practice of Cushion Curve: A Supplementary Discussion[J]. Packaging Technology and Science, 2019, 32(4): 185-197.
[14] SUN D Q, SUN Y J, XU Y L, et al.In-Plane Dynamics of Circular Cell Hexagonally Packaged Honeycombs in Two Principal Axes[J]. Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 2023, 176(1): 26-47.
[15] SUN D Q, ZHANG W H, ZHAO Y C, et al.In-Plane Crushing and Energy Absorption Performance of Multi-Layer Regularly Arranged Circular Honeycombs[J]. Composite Structures, 2013, 96: 726-735.
[16] SUN D Q, ZHANG W H.Energy Absorption Performance of Staggered Triangular Honeycombs under In-Plane Crushing Loadings[J]. Journal of Engineering Mechanics, 2013, 139(2): 153-166.
[17] SUN D Q, ZHANG W H, WEI Y B.Mean Out-of-Plane Dynamic Plateau Stresses of Hexagonal Honeycomb Cores under Impact Loadings[J]. Composite Structures, 2010, 92(11): 2609-2621.
[18] SUN D Q, ZHANG W H.Mean In-Plane Plateau Stresses of Hexagonal Honeycomb Cores under Impact Loadings[J]. Composite Structures, 2009, 91(2): 168-185.
[19] SUN D Q, ZHANG W H, YU J.Dynamic Behavior of Staggered Triangular Honeycomb Cores under In-Plane Crushing Loadings[J]. International Journal of Materials Research, 2012, 103(11): 1376-1389.
[20] SUN D Q, LI G Z, SUN Y J.The In-Plane Crashworthiness of Multi-Layer Regularly Arranged Circular Honeycombs[J]. Science Progress, 2020, 103(1): 1-28.
[21] 孙德强, 郝静, 李靖靖, 等. 奇偶层交错对瓦楞纸板缓冲性能的影响[J]. 包装工程, 2020, 41(3): 108-114.
SUN D Q, HAO J, LI J J, et al.Influences of Odd and even Layer Interleaving on Cushioning Properties of Corrugated Paper Fiberboard[J]. Packaging Engineering, 2020, 41(3): 108-114.
[22] 孙德强, 李想, 郝乾崇, 等. 基于纸张本构模型的瓦楞纸板边压强度仿真分析[J]. 包装工程, 2025, 46(1): 155-162.
SUN D Q, LI X, HAO Q C, et al.Simulation and Analysis of Edge Compression Strength of Corrugated Paper Fiberboard Based on Original Paper Constitutive Model[J]. Packaging Engineering, 2025, 46(1): 155-162.
[23] GIBSON L J, ASHBY M F.Cellular Solids: Structure and Properties (2nd ed)[M]. Cambridge, UK: Cambridge University Press, 1997: 1-13, 309-343.
[24] CHEN H J, SUN D Q, GAO L L, et al.Mechanical Behavior of Closed-Cell Ethylene-Vinyl Acetate Foam under Compression[J]. Polymers, 2024, 16(1): 34.
[25] 谢灵肯, 王可慧, 赵生伟, 等. 高应变率下开孔泡沫铝压缩性能仿真研究[J]. 测试技术学报, 2025, 39(4): 388-396.
XIE L K, WANG K H, ZHAO S W, et al.Simulation Study on Compression Performance of Open Cell Aluminum Foam under High Strain Rate[J]. Journal of Test and Measurement Technology, 2025, 39(4): 388-396.
[26] 高航, 周丰峻, 李锋, 等. 高应变率荷载作用下梯度泡沫铝力学性能研究[J]. 防护工程, 2025, 47(2): 6-12.
GAO H, ZHOU F J, LI F, et al.Study on the Mechanical Properties of Gradient Aluminum Foam under High Strain Rate Loading[J]. Protective Engineering, 2025, 47(2): 6-12.
[27] 张晓忠, 曾斌, 徐戎, 等. 基于霍普金森压杆试验研究闭孔泡沫铝的动态压缩力学性能[J]. 机械工程材料, 2025, 49(4): 69-73.
ZHANG X Z, ZENG B, XU R, et al.Dynamic Compressive Mechanical Properties of Closed Cell Aluminum Foam Based on Hopkinson Pressure Bar Test[J]. Materials for Mechanical Engineering, 2025, 49(4): 69-73.
[28] 国家技术监督局. 包装运输包装件跌落试验方法: GB/T 4857.5—1992[S]. 北京: 中国标准出版社, 1992: 262-264.
State Bureau of Quality and Technical Supervision of the People's Republic of China. Packaging-Transport Packages-Vertical Impact Test Method by Dropping: GB/T 4857.5-1992[S]. Beijing: Standards Press of China, 1992: 262-264.
[29] 国家质量监督检验检疫总局中国国家标准化管理委员会. 包装运输包装件基本试验第17部分:编制性能试验大纲的通用规则: GB/T 4857.17—2017[S]. 北京: 中国标准出版社, 2017: 1-10.
Standardization Administration of the People's Republic of China. Packaging—Basic Tests for Transport Packages: Part 17: General Rules for the Compilation of Performance Test: GB/T 4857.17-2017[S]. Beijing: Standards Press of China, 2017: 1-10.
[30] 国家质量监督检验检疫总局中国国家标准化管理委员会. 包装运输包装件基本试验第2部分:温湿度调节处理: GB/T 4857.2—2005[S]. 北京: 中国标准出版社, 2005: 1-2.
Standardization Administration of the People's Republic of China. Packaging—Basic Tests for Transport Packages: Part 2: Temperature and Humidity Conditioning: GB/T 4857.2-2005[S]. Beijing: Standards Press of China, 2005: 1-2.

基金

国家自然科学基金(51575327); 陕西省科技厅陕西省创新能力支撑计划项目专业检验检测平台(2025JC-GXPT-022); 陕西省科技厅中试基地建设项目(2023ZSJD-06); 陕西省市场监督管理局重点科技研发项目(2025ZDKY06); 陕西省教育厅重点实验室及基地项目(16JS014)

PDF(1121 KB)

Accesses

Citation

Detail

段落导航
相关文章

/