目的 为提升印后切纸机后挡规电液伺服系统在复杂工况下的动态响应速度、跟踪精度和抗干扰能力,提出一种基于改进粒子群优化(IPSO)的模糊PID控制策略。方法 在AMESim-Simulink多域联合仿真平台上,建立了阀控缸电液伺服数学模型,并设计双输入(误差及误差变化率)、三输出(ΔKp、ΔKi、ΔKd)的模糊PID控制器;采用IPSO对2个量化因子(Ke、Kec)和3个反量化因子(Kdp、Kdi、Kdd)进行全局寻优。结果 仿真结果表明,在阶跃响应测试中,将IFPID控制器的调节时间缩短至0.6 s,相较于传统PID,缩短了约67%;在正弦跟踪测试中,最大跟踪误差小于5 mm,降低了超过60%;在突变外力干扰下,可在0.9 s内恢复稳态,鲁棒性显著增强。结论 该控制策略具有良好的自适应和全局寻优能力,能够显著提升切纸机后挡规的控制精度和抗干扰能力,为切纸机的智能化控制提供了有效方法。
Abstract
The work aims to improve the dynamic response speed, tracking accuracy, and anti-interference capability of the electro-hydraulic servo system for the backgauge of post-press paper cutters by proposing a fuzzy PID control strategy based on Improved Particle Swarm Optimization (IPSO). On the AMESim-Simulink co-simulation platform, a mathematical model of the valve-controlled cylinder electro-hydraulic servo system was established. A fuzzy PID controller with two inputs (error and error rate) and three outputs (ΔKp, ΔKi, ΔKd) was designed, and IPSO was applied to globally optimize five parameters, including two scaling factors (Ke, Kec) and three de-scaling factors (Kdp, Kdi, Kdd). Simulation results showed that in step response tests, the IFPID controller reduced the settling time to 0.6 s, approximately 67% shorter than the conventional PID. In sinusoidal tracking tests, the maximum tracking error was less than 5 mm, reduced by more than 60%. Under sudden external disturbances, the system returned to steady state within 0.9 s, indicating significantly enhanced robustness. The proposed control strategy demonstrates strong self-adaptation and global optimization capabilities, significantly improving the control accuracy and robustness of the backgauge system, and providing an effective solution for the intelligent control of paper cutters.
关键词
切纸机 /
改进模糊PID /
改进粒子群算法 /
电液伺服系统 /
联合仿真
Key words
paper cutter /
improved fuzzy PID /
improved particle swarm optimization /
electro-hydraulic servo system /
co-simulation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 杨思俊, 张鹏. 高精度切纸机控制系统设计研究[J]. 造纸科学与技术, 2025, 44(4): 94-97.
[2] YANG S J, ZHANG P.Design of High-Precision Paper Cutter Control System[J]. Paper Science & Technology, 2025, 44(4): 94-97.
[3] 马骥, 陶涛. 切纸机高效节能液压系统设计与应用[J]. 机械设计与研究, 2019, 35(4): 105-108.
[4] MA J, TAO T.Design of a High Efficiency and Energy-Saving Hydraulic System for Paper Cutting Machine[J]. Machine Design & Research, 2019, 35(4): 105-108.
[5] 吴上生, 任帅康. 模糊PID算法在印刷机控制系统中的应用[J]. 机械设计与制造, 2022(4): 174-177.
[6] WU S S, REN S K.Application of Fuzzy-PID Algorithm in Printing Machine Control System[J]. Machinery Design & Manufacture, 2022(4): 174-177.
[7] 彭熙伟, 刘育江, 陈涵煜, 等. 基于变死区补偿的模糊滑模电液比例伺服控制系统研究[J]. 北京理工大学学报, 2023, 43(9): 971-978.
[8] PENG X W, LIU Y J, CHEN H Y, et al.A Fuzzy Sliding Mode Electro-Hydraulic Proportional Servo Control System Based on Variable Dead-Zone Compensation[J]. Transactions of Beijing Institute of Technology, 2023, 43(9): 971-978.
[9] 蒋凌云, 魏庆来, 张峰华, 等. 基于改进粒子群优化算法的PID控制器参数整定[J]. 控制工程, 2024, 31(3): 470-477.
[10] JIANG L Y, WEI Q L, ZHANG F H, et al.PID Controller Parameter Tuning Based on Improved Particle Swarm Optimization Algorithm[J]. Control Engineering of China, 2024, 31(3): 470-477.
[11] 陈帅, 汪成文, 张震阳, 等. 改进模糊PID方法及其在电液伺服控制中的应用[J]. 机电工程, 2021, 38(5): 559-565.
[12] CHEN S, WANG C W, ZHANG Z Y, et al.Improved Fuzzy PID Method and Its Application in Electro-Hydraulic Servo Control[J]. Journal of Mechanical & Electrical Engineering, 2021, 38(5): 559-565.
[13] 马程, 蒋刚, 郝兴安, 等. 足式机器人腿部关节改进单神经网络PID控制算法研究[J]. 机床与液压, 2024, 52(3): 60-66.
[14] MA C, JIANG G, HAO X A, et al.Research on Improved Single Neural Network PID Control Algorithm for Leg Joints of Footed Robot[J]. Machine Tool & Hydraulics, 2024, 52(3): 60-66.
[15] 胡昆, 李思超, 鲁元昊, 等. 基于模糊PID的电液位置伺服系统建模与仿真[J]. 机电工程技术, 2023, 52(4): 90-94.
[16] HU K, LI S C, LU Y H, et al.Modeling and Simulation of Electro-Hydraulic Position Servo System Based on Fuzzy PID[J]. Mechanical & Electrical Engineering Technology, 2023, 52(4): 90-94.
[17] 蔡改贫, 曾常熙, 周小云, 等. 基于改进PSO算法的电液位置伺服系统MRAC跟踪控制[J]. 液压与气动, 2021, 45(10): 177-183.
[18] CAI G P, ZENG C X, ZHOU X Y, et al.Model Reference Adaptive Control of Electro-Hydraulic Position Servo System Based on Improved PSO Algorithm[J]. Chinese Hydraulics & Pneumatics, 2021, 45(10): 177-183.
[19] 蔡改贫, 周小云, 刘鑫. 改进PSO算法优化的电液位置伺服系统自抗扰跟踪控制[J]. 机械科学与技术, 2021, 40(12): 1904-1912.
[20] CAI G P, ZHOU X Y, LIU X.Auto Disturbance Rejection Tracking Control of Electro-Hydraulic Position Servo System Optimized by Improved PSO Algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1904-1912.
[21] FENG H, MA W, YIN C B, et al.Trajectory Control of Electro-Hydraulic Position Servo System Using Improved PSO-PID Controller[J]. Automation in Construction, 2021, 127: 103722.
[22] MA Y, GU L C, XU Y G, et al.Research on Control Strategy of Asymmetric Electro-Hydraulic Servo System Based on Improved PSO Algorithm[J]. Advances in Mechanical Engineering, 2022, 14(5): 16878132221096226.
[23] 徐勇, 张智华, 龚旭, 等. 布谷鸟搜索耦合遗传算法的电液伺服系统模型预测控制设计[J]. 机床与液压, 2021, 49(19): 100-104.
[24] XU Y, ZHANG Z H, GONG X, et al.Design of Model Predictive Control for Electro-Hydraulic Servo System Based on Cuckoo Search and Genetic Algorithm[J]. Machine Tool & Hydraulics, 2021, 49(19): 100-104.
[25] 姬鹏飞, 侯凡博, 杜毅. 基于混合粒子群算法的注塑机电液伺服系统控制研究[J]. 机床与液压, 2020, 48(16): 132-135.
[26] JI P F, HOU F B, DU Y.Research on the Control of Injection Molding Machine Electro-Hydraulic Servo System Based on Hybrid Particle Swarm Optimization[J]. Machine Tool & Hydraulics, 2020, 48(16): 132-135.
[27] 赵岩, 周秦源, 邵念锋, 等. 基于RBF神经网络模糊PID控制的电液伺服系统[J]. 机电工程, 2022, 39(2): 244-249.
[28] ZHAO Y, ZHOU Q Y, SHAO N F, et al.Electro-Hydraulic Servo System Based on RBF Neural Network Fuzzy PID Control[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(2): 244-249.
[29] SONG Y, HU Z W, AI C.Fuzzy Compensation and Load Disturbance Adaptive Control Strategy for Electro-Hydraulic Servo Pump Control System[J]. Electronics, 2022, 11(7): 1159.
[30] 刘建娟, 吴豪然, 姬淼鑫, 等. 多策略改进粒子群优化AGV模糊PID控制[J]. 机床与液压, 2024, 52(9): 44-51.
[31] LIU J J, WU H R, JI M X, et al.Multi-Strategy Improved Particle Swarm Optimization AGV Fuzzy PID Control[J]. Machine Tool & Hydraulics, 2024, 52(9): 44-51.
基金
北京印刷学院学院校级教学改革(创新重点)项目(20240027); 北京印刷学院学科建设和研究生教育专项研究生课程项目(21090225001)